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S U M M A R Y
Joint inversion of different geophysical data sets is becoming a more popular and powerful tool,
and it has been performed on data sensitive both to the same physical parameter and to different
physical parameters. Joint inversion is undertaken to reduce acceptable model space and to
increase sensitivity to model parameters that one method alone is unable to resolve adequately.
We examine and implement a novel hybrid joint inversion approach. In our inversion scheme
a model—the reference model—is fixed, and the information shared with the subsurface
structure obtained from another method will be maximized; in our case conductivity structures
from magnetotelluric (MT) inversion. During inversion, the joint probability distribution of the
MT and the specified reference model is estimated and its entropy minimized in order to guide
the inversion result towards a solution that is statistically compatible with the reference model.
The powerful feature of this technique is that no explicit relationships between estimated
model parameters and reference model ones are presumed: if a link exists in data then it is
highlighted in the estimation of the joint probability distribution, if no link is required, then
none is enforced. Tests performed verify the robustness of this method and the advantages of
it in a 1-D anisotropic scenario are demonstrated. A case study was performed with data from
Central Germany, effectively fitting an MT data set from a single station within as minimal an
amount of anisotropy as required.
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1 I N T RO D U C T I O N

Abrupt, or relatively abrupt, changes in physical and chemical prop-
erties in the lithosphere are usually associated with Earth’s struc-
tural discontinuities, with the primary plate tectonic discontinu-
ities in the upper mantle above the 410 km discontinuity being the
crust–mantle boundary (usually referred as the Mohorovicic discon-
tinuity, or Moho, although the petrological crust–mantle boundary
may not necessarily be the same as the seismically defined bound-
ary, e.g. Giese et al. 1999; Janik et al. 2009) and the lithosphere–
asthenosphere boundary (LAB; which has its own set of intricacies,
see e.g. Eaton et al. 2009). These two boundaries are characterized
by different fundamental changes: the Moho is characterized by a
change in composition between the crust and the mantle from mafic
to ultramafic compositions, whereas the LAB sensu stricto is gov-
erned by a rheological change between the rigid lithosphere and
viscous asthenosphere (Barrell 1914; Parsons & McKenzie 1978),
although different geophysical and geochemical proxies exist (e.g.
Eaton et al. 2009). The cause of the LAB discontinuity in geophys-
ical proxies is hotly debated, and is presumed to be the onset of
partial melting or the rapid increase in water content, or both. These
interfaces, as well as local lateral interfaces, are imaged with dif-
ferent accuracy and precision by different geophysics techniques,
and are completely ignored by others; see recent overviews by Cook
et al. (2010) for the Moho and Eaton et al. (2009) for the LAB.

This observation drove us to develop an inversion scheme for
magnetotelluric (MT) data that is able to handle information ob-
tained from other geophysical, or indeed geological or geochemi-
cal, data sets without any geometric link in the models obtained,
as in for example Gallardo & Meju (2003, 2007), Moorkamp
et al. (2007, 2010) and Roux et al. (2011), or any parametric
physical link.

Anisotropy, the directional dependence of material properties,
plays an essential role as an indicator of heterogeneity and petro-
logical differentiation that characterize a certain region: anisotropy,
its presence, absence or magnitude, particularly electrical and seis-
mic anisotropy, constitutes an essential parameter for investigating
lithospheric fabrics. Approximate agreement between geo-electric
strike and seismic fast-axis direction in several regions, for example
southern part of the Slave province (Eaton et al. 2004), central Aus-
tralia (Simpson 2001), central Germany (Gatzemeier & Moorkamp
2005), the Kaapvaal craton (Hamilton et al. 2006) and the São
Francisco craton (Padilha et al. 2006), suggests that a common
origin may contribute to both electrical and seismic anisotropy.
Usually, lattice-preferred orientation of olivine crystals is consid-
ered to be the source of seismic anisotropy in the upper mantle
(e.g. Savage 1999), but laboratory measurements infer that electri-
cal anisotropy caused by the orientation of olivine crystals cannot be
the only source of the high levels of anisotropy observed in the field
(Gatzemeier & Tommasi 2006).
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While the source of upper-mantle electric anisotropy is still de-
bated, its effect is usually recognizable in MT data either in form
of distortion or by other peculiar indication (e.g. non-zero main
diagonal elements in the impedance tensor with a null tipper vec-
tors, indicative of a 1-D anisotropic environment). The qualita-
tive agreement, as detailed above, suggests that an MT model can
be constrained effectively by a seismic model, thereby reducing
the non-uniqueness inherent the solution of a 1-D anisotropic MT
inverse problem.

We note here that in 1-D for perfect data at all frequencies there
exists only one model that fits the MT data (Bailey 1970), so MT
is inherently unique and non-uniqueness is a function of data error,
imprecision and insufficiency.

In order to reduce this non-uniqueness inherent the MT prob-
lem, we employ in our inversion scheme mutual information (MI),
a quantity used in information theory that defines a distance metric
between two images, as a functional link between two models. Max-
imizing MI has been used in object recognition, image registration
to find and evaluate the alignment of model and image data (Viola
& Wells 1997), and in medical tomography to compare and align to-
mographic maps obtained from different methods (Collignon et al.
1995), to name but three applications of many tens. Recently, Haber
& Holtzman Gazit (2013) proposed the use of MI in joint inverse
problem solution, but did not give any examples of its use.

The overarching idea that drives our inversion scheme is that to-
mographic models derived from the subsurface obtained by different
methods are images whose relative distance apart can be measured
and minimized. In detail, we invert MT impedance data keeping the
resulting model close, in an MI sense, to a defined reference model
of the same region. The introduced measure of distance is not only
intuitive, but it respects all the properties a definition of distance is
required to uphold.

In this scheme the electrical conductivity of the subsurface and
the reference model are not forced to be similar in a geometrical
sense, but rather they are interpreted as images or pictures of the
subsurface and are kept close during the optimization path via the
minimization of the measure of a distance between pictures de-
fined. The closer the two pictures are the greater is the information
shared about the source—the subsurface—that generates the models
themselves.

Without the possibility to compare our algorithm results with
analytical exact solutions, we performed both synthetic tests and
a case study to investigate the applicability of the inverse scheme
with real data from a well-studied region. With respect to the real
world, we test our inversion scheme on MT data from Central Ger-
many that have already been studied in detail. Since both velocity
and electrical conductivity models are available for this region,
we decided to use seismic models as the reference for our in-
version scheme and compare our results with the MT models of
this region available in literature. We could equally assume that
the MT models are the reference model and invert the seismic
data discovering models close, in the MI sense, to those reference
MT models.

The studied region is characterized by two principal anisotropic
layers, with the seismic fast-axis direction approximately aligned
with the NE–SW and E–W directions related to the lithosphere and
asthenosphere, respectively (Roux et al. 2011). The inversion of the
MT data from the area produces an electrical conductivity model
close—in a MI sense—to the seismic one, and a joint probability
distribution that can be interpreted as a relation that links electri-
cal conductivity and seismic velocity in the study area. Moreover
the final model improves the compatibility of anisotropic electrical

conductivity values characterizing the model with the values of rock
samples measured in laboratory.

2 I N V E R S I O N M E T H O D A N D DATA

The MT technique is broadly used in electrical tomography of the
Earth at many scales, from 100s m to 100s km, and its characterizing
equations, derived from the classic Maxwell’s equations, are well
known and solved in several different domains. The subject of this
work is the solution of the MT inverse problem in a one-dimension
anisotropic domain as an exemplar of the strengths and advantages
of the MI approach to joint inversion. In this section, we present
the setting of the problem from a mathematical perspective, as well
as the synthetic and real data used for the algorithm tests, while in
the Section 3 we will present the results of both synthetic tests and
Central Germany data inversion.

2.1 Problem setting: the MI constraint

There already exist algorithms to invert MT 1-D anisotropic data
(e.g. Abramovici & Shoham 1970; Pek & Santos 2006). The prin-
cipal difference we introduce in our inversion scheme is the mini-
mization of the distance with respect to a general reference model,
formulated in term of MI (Haber & Holtzman Gazit 2013). MI is
a fundamental quantity defined in information theory and is ap-
plied in several techniques. The MI feature used in the context of
this paper is that it is possible define a distance measure between
n-dimensional images via MI (cf. e.g. Modersitzki 2004). In its
simplest form, the MI between two images x̄ and ȳ is defined as

I (x̄ ; ȳ) : =
∑
x∈x̄

∑
y∈ȳ

p(x, y) log2

p(x, y)

p(x)p(y)
, (1)

where �̄ is an array storing the image voxel values, p(�) is the
marginal probability distribution of the random variable �, and
p(�1, �2) the joint probability distribution of the two random vari-
ables �1, �2.

In the Bayesian approach to inverse problems, probability density
functions are used to find the optimal solution for an optimization
problem. We prefer to clarify that in our approach the probability
density functions are estimated via kernel estimation (Silverman
1986) and used to define a penalty function

φI := [b − I (x̄ ; ȳ)] , (2)

where b is a constant value that makes φI ≥ 0, to be used in a
Newton-type algorithm. As I is used here as a measure of distance
between images (cf. the Appendix for details), the presence of b
does not influence the shape of the objective function, but only on
the relative weight of φI in the minimized objective function.

We opt for this choice in consideration of the extension of our
scheme to two- and three-dimensions, environments in which the
computation cost required by the Bayesian approach becomes barely
affordable.

We thus use the kernel estimation method described in Silver-
man (1986), namely, the marginal probability distribution p(u) is
approximated by its estimation ps(u) that depends on the chosen
kernel function K(s, t), where s > 0 is a parameter that controls the
width of the kernel function and

∫ +∞
−∞ K (s, t)dt = 1 ∀s > 0.

With the chosen method the probability density function is thus
given by

p(x) � ps(x) = 1

N s

N∑
i=1

K

(
x − x̄i

s

)
(3)
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and,

p(u) � ps(u) = 1

N
N∑

i=1

K H (u − ūi ), (4)

where N is the number of classes used to discretize the random
variable, u = [x, y]T, ūi = [x̄i , ȳi ]T and

K H = |H |− 1
2 K (s, H− 1

2 u), with H =
[

s2 0
0 s2

]
. (5)

In this work we chose to follow Haber (2004, personal communi-
cation) and estimate the marginal and joint probability distributions
using a kernel function K defined as

K (s, t) :=
{

4
3s cos4

(
π t
2s

)
, if − s < t < s

0, otherwise.
, (6)

In theory any symmetric function that integrates to the unity can
be chosen as the kernel, but it is common practice to select a bell
function that localizes the probability within bandwidth s. The ker-
nel function used in this paper has the notable property to vanish
outside the interval [ − s; +s], and has left and right derivatives with
respect to t equal and continuous in ± s. Whereas these properties
are not fundamental in the computation of the marginal probability
distribution of a random variable, they become important in the
computation of its derivative with respect to t. The adopted kernel
function has thus the advantage of being continuous and derivable
along its whole definition domain, with known derivative with re-
spect to t. The knowledge of this analytical form of ∂K

∂t speeds up
the computation of the Jacobian of the objective function used in
the Newton-type minimization algorithm implemented.

The objective function we minimize is therefore

φ(m̄, R̄) :=
∑

i

[
di − F(m̄)i

σi

]2

+ λ2
I φ

2
I (m̄, R̄), (7)

where m̄ is the vector storing the MT model parameters, R̄ is the
reference model, d̄ is the data array, σ̄ is the error array, F̄(�̄) is the
array of data predicted by the model �̄ and λI is a fixed parameter
that controls the trade-off between data fitting and minimization
of MI.

2.1.1 An example

Let us suppose we wish apply the described scheme to build an
objective function to be used for an inversion that retrieves the
values of the x parameter to be constrained by the knowledge of
the values of the y parameter in the subsurface. The computation of
φI requires the knowledge of the marginal probability distributions
p(x) and p(y) and the joint probability distribution p(x, y). Let us
assume that x may vary in certain interval [xm, xM] with xm < xM.
The number of classes used to discretize this interval is N , so that
the ith class is bounded by its limits

[
i−1
N ; i

N
]
. It is now possible to

estimate the three probability distributions required by substituting
eq. (6) in eq. (5) and eq. (5) in eqs (3) and (4). With the knowledge
(or an implementation) of the forward operator F and the possibility
to set values for b and λI, the construction of the objective function
φ(m̄ = x, R̄ = y) is concluded and the inverse problem set up is
complete.

2.2 Problem setting: the inversion scheme

As eq. (7) is the sum of quadratic terms, we minimize it using
the Levenberg–Marquardt algorithm (Marquardt 1963), a damped

version of the classic Gauß–Newton algorithm, developed for
quadratic programming. Damping is generally required both to sta-
bilize the linear system and to avoid reaching a region of model
space too far away with respect to the starting guess model m̄0. We
define the vector

�̄ =

⎡
⎢⎢⎢⎢⎣

�1

�2

...

�N

�N+1

⎤
⎥⎥⎥⎥⎦ , with

{
�i =

[
di −F(m̄)i

σi

]
, i = 1, ..., N .

�N+1 = λI φI (m̄, R̄).
(8)

The system of equations we solved is then, at the k + 1th iteration[
J (m̄k)T J (m̄k) + λI

]
(m̄k+1 − m̄k) = −J T (m̄k)�̄(m̄k), (9)

where

J (m̄k) = Jk = ∂�̄

∂m̄

∣∣∣∣
m̄=m̄k

, (10)

λ is the damping factor, chosen by line search at each iteration, as
suggested by Aster et al. (2005), and I is the identity matrix. The
k + 1th model is thus expressed by

m̄k+1 = [
J T

k Jk + λI
]−1 [−J T

k �̄(m̄k)
] + m̄k . (11)

We chose, as the criterion to stop the iterative process, to define a
threshold value ε and we interrupt the iterative process as soon as
‖�̄(m̄k+1)‖ − ‖�̄(m̄k)‖ ≤ ε [i.e. φ(m̄k+1, R̄) − φ(m̄k, R̄) ≤ ε].

So far, the discussion relative to the inverse algorithm, as well as
the one related to the MI constraint, has been general and applicable
to a broad range of problems. In order to invert MT data, we need
to specify the behaviour of F(�) in eq. (7). We chose to use the
algorithm described by Pek & Santos (2002) in order to estimate the
MT impedance tensor relative to each considered period. We thus
predict four complex impedance tensor elements per frequency:
four real parts and four imaginary parts.

In the local approximation, the Earth is modelled as a layered
half–space, and each layer is characterized by two aggregated con-
ductivities, a high electrical conductivity value σ h and a low electri-
cal conductivity value σ l and the direction of the high conductivity
value βs. In general, it is possible to express the electrical conduc-
tivity tensor as a symmetric, positive defined tensor, but the MT
problem in the anisotropic 1-D case is inherently singular (Pek &
Santos 2002; Yin 2003). We thus inverted 8 · nf data, the four real
and the four imaginary parts of the impedance tensor relative to
each frequency, to retrieve the nl · 3 elements of the model, where nf

is the number of considered frequencies and nl the number of layers
(including the infinite basement on the bottom of the half-space) that
describe, locally and in 1-D, the subsurface electrical conductivity.
As the common anisotropic direction for EM and seismic model
has been highlighted and there are no evidence of common sources
between shear velocity and electrical conductivity that would lead
to a parametric relationship between them, we decided to apply the
MI constraint only to the anisotropic strike direction βs, leaving the
other parameters unconstrained.

The following sections are organized as:

Section 2.3: a description of the synthetic model and the refer-
ence models used for synthetic tests;

Section 2.4: a description of the data set used for the validation
of this method in an appropriate region;

Section 3: the description of the result obtained by applying the
described method to both the synthetic (Section 3.1) and the real
(Section 3.2) data sets.
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Figure 1. (a) Synthetic model high (red line) and low (blue line) conduc-
tivities (a1) and anisotropy direction (a2); (b) compatible reference model;
(c) incompatible reference model and d) random reference model used in
the synthetic tests. The reference models are here given in term of pure
numbers, as the nature of the reference does not influence the algorithm.

2.3 Synthetic tests data

In Fig. 1 are reported the reference models we used for testing our
approach as well as the synthetic model m̄ true. We test the MI based
constraint for three different cases:

(i) compatible reference model;
(ii) incompatible reference model and
(iii) randomly created reference model.

With these three different tests our intention is to ascertain if the
impact of a wrong (consistent or inconsistent) reference model may
severely influence the inversion by misdirecting the result towards an
incorrect final model. We added noise to the synthetic data produced
form m̄ true of the form of random Gaussian distributed error of
3 per cent of the amplitude of the highest tensor element relative to
each frequency. As the aim of these tests is to check the behaviour of
the algorithm, in replacement of the data, predicted and simulated,
we report the first N terms of the eq. (7). In all the tests performed
we discretized the possible direction in eight values (i.e. N = 8),
the trade-off parameter λI was set to 1 and the value of b was set
to 3.

2.4 Real data

The MT data used in this study were acquired in the Rhenish Shield
region, Central Germany between 1997 June and September and
1998 October to December (Leibecker et al. 2002). From these
surveys we analysed the data from station DIE, previously analysed
and modelled by Roux et al. (2011). The location of the station
and the topography of the surrounding region are shown on Fig. 2.
Other stations in the area present the same characteristics, but are
of inferior data quality (Roux et al. 2011). We considered data from
station DIE at all periods within the period range 10–4100 s.

MT data are usually affected by distortion caused by small het-
erogeneities and local structure (Groom & Bailey 1989). Based on
prior studies of this area (e.g. Leibecker et al. 2002; Roux et al.

Figure 2. Topographic map of the studied area. The black star indicate the
location of DIE station.

2011) we expect a 1-D anisotropic environment, both electrically
and seismically. In order to model MT data in a 1-D anisotropic
domain the determinable effects of galvanic charges on the elec-
tric field from local, small-scale, distorters have to be identified
and removed. We pre-processed the data, as suggested in Jones
(2012), to remove the determinable effects of galvanic distortion.
As we use the same data, we refer to Jones (2012) for a complete
discussion regarding the process undertaken to remove the deter-
minable effects of galvanic charges on the electric field from local,
small-scale, distorters. After the processing procedure, we obtained
a set of 18 complex impedance tensors Ẑ(T ), one per period, all
with tr(Ẑ) = 0; this formal property is expected in 1-D anisotropic
environments (Pek & Santos 2002).

For the reference model, we chose one of the seismic models
obtained by Roux et al. (2011). In that work, Roux et al. (2011)
implemented a genetic algorithm (NAGA-II) as their optimization
engine, and jointly inverted for a set of suitable and compatible
seismic and resistivity anisotropic 1-D models. Our reference model
is the one with the minimum RMS relative to the seismic problem,
and is shown in Fig. 3.

[For information regarding the inversion technique used for the
seismic data, see Roux et al. (2011) and references therein.]

We limit our MI constrain to the strike direction, making the
assumption that the shear waves and the electrical anisotropy have
a common source and thus that both directions share information
about their common source. Thus, in eq. (7) the term φI(m, R) min-
imizes the distance between the one dimensional images given by
the seismic fast-axis direction (R) and the electrical high-conductive
direction (m).
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Figure 3. Seismic fast-axis direction from Roux et al. (2011; black line)
used as reference model R.

3 R E S U LT S A N D D I S C U S S I O N S

3.1 Synthetic tests

With these synthetic tests we aim to show both the effect of choice of
different reference models on the retrieved model and to check that
the (synthetic) data are reasonably well fit by the retrieved model.
In Fig. 4, the terms of the objective function (7) relative to the data
fit are reported. It is common in literature to report and display
predicted and measured data, but for these synthetic tests we prefer

Figure 4. Objective function terms relative to the synthetic tests. In corre-
spondence of the ith value of the x-axis is reported the value value of the
ith term of the objective function as defined in eq. (8) (with i ∈ [1, N]).
The graphics are relative to (a) unconstrained inverse problem; (b) inversion
contained using the compatible reference model; (c) inversion constrained
using the incompatible reference model and (d) inversion constrained using
a random reference model.

Table 1. The rms rel-
ative to the synthetic
tests.

Reference type Rms

No reference 1.4
Compatible 1.9
Incompatible 3.0
Random 1.5

to show directly the objective function elements, as it is easier to
compare these values with their expected value of 1. As can be
seen, both from the graphics in Fig. 4 and from their root mean
square reported in Table 1, the data fit is qualitatively similar. The
unconstrained retrieved model predicts the data better (in the least
square sense) than the constrained ones, as expected. Thus we can
conclude that for these cases and using an isotropic half-space as the
starting model for the algorithm, all the compatible reference model
produce an acceptable data prediction, with a relevant difference in
rms returned by the incompatible reference model.

Finally, in Fig. 5 are reported the results of the four inversions
(the unconstrained one and the three constrained ones). The uncon-
strained solution, as the one constrained with a random reference
model, presents an unstable profile, which is expected since MT
inversion is a well-known example in the class of ill-posed inverse
problems (Parker 1980). The constrained solutions are not dissim-
ilar to the unconstrained ones, with the notable exception of the
inversion constrained by the compatible reference model. These re-
sults demonstrate that the MI constraint term plays an active role
in the inversion and prevents the final model from being too rough,
without enforcing any similarity when the incompatible reference
model is used.

3.2 Real data set from Central Germany

Notwithstanding the concerns about the use of linearized ap-
proaches found in, for example Tarantola (2006) and Moorkamp
et al. (2007), we note that the validity for the use of a genetic algo-
rithm (GA), as an engine for an optimization problem such as the one
we aim to solve, is for problems that attempt to resolve model param-
eters numbering of the order of 30–40 (Mandolesi 2013, chap. 4).
If the MT inverse problem requires a larger number of parameters,
the GA loses its efficient convergence properties. Our goal is to
work towards 2-D, and even 3-D, joint inversion, where the number
of parameters becomes far too large for stochastic methods. Thus
we need to explore methods that are more efficient, and we begin
with the 1-D problem. As stated above, we discretize the model as
described in Pek & Santos (2002), inverting for the high conduc-
tivity value σHI, the low conductivity value σLO and the anisotropic
strike direction βs. A reminder again that here we have assumed that
the anisotropy axes are horizontal and vertical, and that we cannot
sense vertical anisotropy in 1-D in MT. Any deviation from this,
such as dipping anisotropy, cannot, in any case, be resolved due
to the non-uniqueness inherent the anisotropic MT 1-D problem
(Yin 2003).

Assessing this non-uniqueness requires use of a Tikhonov regu-
larization term in the objective function, in order to penalize models
that are too rough (Constable et al. 1987). We added a quadratic
term that penalizes the differences between the high and low con-
ductivities, φ2

A(m̄) = ∑
i (log σHIi − log σLOi )2, to penalize models

that exhibit high total (summed) anisotropy, and a term to introduce
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Figure 5. Inversion results of the synthetic tests. These profiles are relative to (a) unconstrained test conductivity (a1) and anisotropy direction (a2);
(b) compatible reference model test conductivity (b1) and anisotropy direction (b2); (c) incompatible reference model test conductivity (c1) and anisotropy
direction (c2) and (d) random reference model test conductivity (d1) and anisotropy direction (d2).

a first-order Tikhonov regularization between the layer-to-layer con-
ductivities, λ2

T φ2
T (m̄) = λ2

T L2m̄2 where L is the roughening matrix

L =

⎡
⎢⎢⎢⎢⎣

−1 1
−1 1

· · ·
−1 1

−1 1

⎤
⎥⎥⎥⎥⎦ , (12)

and the product L · m̄ is a finite-difference approximation that is
proportional to the first derivative of m̄. Trade-off between data-
fitting, regularization and the distance from the reference model is
controlled via appropriate coefficients, selected ad hoc via a trial-
and-error process, during the inversion.

Summarizing, the relevant objective function is

φ(m̄, R̄) :=
∑

i

[
di − F(m̄)i

σi

]2

+ λ2
I φ

2
I (m̄, R̄)

+ λ2
Aφ2

A(m̄) + λ2
T φ2

T (m̄). (13)

In order to set the number of layers, we performed an F-test on
results from an isotropic inversion validating the hypothesis that a
certain number, n layers, is adequate to fit the data. Starting from
n = 2 logarithmically spaced layers, we successively attempt to
fit data progressively better by doubling the number of layers at
each iteration. We accepted the hypothesis that n = 32 layers are
adequate to fit the DIE data with a significance level of 0.05. This test
ensures that a finer discretization of the subsurface domain, using
64 logarithmically spaced layers instead of 32, does not improve the
χ 2 statistic more than 5 per cent. Similarly, 16 layers is insufficient.
In Fig. 6 the rms against number of layers related to an isotropic
inversion of the data set is reported.

Figure 6. The rms versus number of layers. The arrow indicates the point
that represents, in the presented scheme, the best trade-off between data fit
and model complexity.

The errors relative to the model parameters were estimated via
the linearized formula (Aster et al. 2005):

σm =
⎛
⎝

√ ∑
i r 2

i

p − q

⎞
⎠

2

· diag[Cov(m̄∗)], (14)

where is the p number of data and q number of parameters, ri =
G(m̄∗)i − di is the ith residual, Cov is the estimated covariance
matrix:

Cov(m̄∗) ≈ [
J (m̄∗)T J (m̄∗)

]−1
, (15)

and J (m̄∗) the Jacobian matrix computed respect to the final
model m̄∗ .
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In the previous studies of this area, taken without the constraint
of MI, problems relating to the minimum value of the horizontal
electrical conductivity ratio σHI

σLO
needed to fit the data have been

highlighted (i.e. the resistivity in resistive direction). In particular,
it is important to define the minimum acceptable level of electrical
anisotropy in the asthenosphere to compare with petrological and
seismological studies.

Constrained by the reference model, our resulting model, shown
in Fig. 7, presents three anisotropic regions, similar to the reference
model itself. Inside the 95 per cent confidence interval, a difference
of more than one order of magnitude between the high conductivity
and low conductivity is never required. In Fig. 8 the retrieved model
relative to the top 50 km is shown.

Interpreting the anisotropy as an indicator of physical and chem-
ical property changes, it is possible to infer physical or chemical
boundaries in the areas in which they arise. Thus, the Moho inter-
face is resolved between 24 and 29 km depth, inside the layer that
exhibits the highest anisotropy, and the LAB, the next important
boundary, is between 85 and 99 km in depth, again in a highly
anisotropic region. Both of these are in excellent agreement with
the values found in independent seismic and MT studies of the area
(cf. Gatzemeier & Moorkamp 2005; Bischoff 2006) and consistent

Figure 7. Electrical conductivity model from DIE station in Central Ger-
many, relative to the complete discretization of the domain. The left-hand
panel present the logarithm of conductivities ± the relative error. Blue and
red are relative to the two different aggregate conductivities. The right-hand
panel present the anisotropic strike direction ± the direction error. A detail
of the upper 50 km of this model is presented in Fig. 8.

Figure 8. Electrical conductivity model from DIE station in Central Ger-
many, relative to the top 50 km. The left-hand panel present the logarithm of
conductivities ± the relative error. Blue and red are relative to the two dif-
ferent aggregate conductivities.The right-hand panel present the anisotropic
strike direction ± the direction error.

Figure 9. Maximum anisotropy rate σHI+var(σHI)
σLO−var(σHI)

computed from the model
in Fig. 7.

with Phanerozoic Europe eLAB values (Koria 2007; Jones et al.
2010).

The anisotropy direction in the crust is resolved in the interval of
(50 ± 2)◦, in good agreement with the absolute plate motion (APM)
direction of [50◦ − 55◦] for Central Europe determined by Gripp
(1990), and (78 ± 2)◦ at the depth of about 100 km, which is oddly
at a high angle to APM, as remarked by prior authors (Gatzemeier
& Moorkamp 2005; Roux et al. 2011). These anisotropy directions
roughly correspond to direction of NE–SW in the crust and E–W
in the upper mantle. Interpretation of these directions is beyond the
scope of this paper.

The strongest anisotropy in the model is approximately at a depth
of 70 km < z < 150 km, and the maximum anisotropy rate, es-
timated by ratio σHI+varσHI

σLO−varσLO
, in which var is the variance of the

considered model parameters, reported in Fig. 9.
Overall, our results from station DIE are in good agreement

with models obtained by past studies in this area (e.g. Leibecker
et al. 2002; Roux et al. 2011), with the significant enhancement
that our modelling vastly improves the constraint on acceptable
maximum electrical anisotropy by defining, for the first time, the
resistivity in the resistive direction in the asthenosphere. In detail
the maximum electrical anisotropy predicted by our model—in the
95 per cent confidence interval, computed as 1.96

√
var(�)—is never

higher than 4. This value is in agreement with estimates of likely
observable anisotropy based on values measured in laboratory for
olivine (Gatzemeier & Tommasi 2006), and far lower than that
of 125–250:1 in Gatzemeier & Moorkamp (2005) and lower than
that of about 10:1 in Roux et al. (2011) (note that we modelled
distortion-corrected responses, not the original responses, which
may account for these different anisotropic factors). In Fig. 10 the
retrieved model is compared with results from Roux et al. (2011)
and the constraint on resistivity in resistive direction is evident. The
data fit is illustrated in Fig. 11.

The chosen discretization of the domain prevents optimum fitting
of high frequency impedances, where data relative to the longest pe-
riods are precisely predicted by the model. The process of removing
distortion from the raw data produces non-negligible errors in the
resulting impedances. Therefore, propagation of errors via the usual
linearized formula is not possible for these impedances, preventing
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us from modelling apparent resistivities and phases, more com-
monly displayed in the MT community. The achieved rms = 0.24
in combination with its expected value E[rms] = 1 highlights that
the parametric errors relative to the impedances are probably over-
estimated [see e.g. Chave & Jones (1997) for a comparison of
parametric and jackknife error estimates].

Finally, we examine the estimated joint probability distribu-
tion of the seismic Vs fast-axis azimuth angle and high electrical

Figure 10. Retrieved model (yellow and red) compared with results from
Roux et al. (2011) model A (black solid and dashed line). It is evident the
constraint on resistivity in resistive direction. Colours in background and
grey (solid and dashed) lines show the model distribution as retrieved in
Roux et al. (2011).

Figure 12. Computed joint probability distribution of anisotropic elec-
tric strike direction (x-axis) and azimuthal seismic fast-axis direction
(y-axis). This function have been estimated fixing s = 1.0. The values
on the axis correspond to the discretization—in this case in 128 values—
of the values that define the MT strike directions and the ones that de-
picts the reference model R shown in Fig. 3. Thus the probability that a
value R� : π ·n

128 ≤ R� ≤ π ·(n+1)
128 in figure R correspond to a certain value

m� : π ·i
128 ≤ m� ≤ π ·(i+1)

128 is given by the value of ps(n, i).

conductivity anisotropic strike angle shown in Fig. 12. The
joint probability distribution has been used in by other au-
thors as an indicator of compatible models (cf. e.g. Bedrosian
et al. 2007; Muñoz et al. 2010), with the difference that in this
work it takes an active role in constraining the model space.

Figure 11. Measured and predicted data for DIE station. Red circles represent the real parts, blue diamonds represent imaginary parts, black circles and
diamonds are the predicted data for real and imaginary parts, respectively. The top left-hand panel is relative to Zxx, the top right to Zxy, the bottom left to Zyx

and the bottom right to Zyy.
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The estimated joint probability distribution shows a pattern that
suggests overall that similar values of seismic fast-axis direction
correspond to the high conductivity directions. In detail, the three
high probability areas are approximately aligned, suggesting a con-
stant offset between the considered directions.

These considerations reinforce the support for the hypothesis that
the most conductive electric direction and the fast-axis seismic di-
rection have causes that are, at least partially, in common. Given that
the pattern appears non-continuous, we reject the hypothesis of a
direct, functional relation between seismic and electrical anisotropy,
while the clear trend suggests that a possible relation between the
sources of the anisotropy. Clustering in the joint probability distri-
bution is due to the use of a layered reference model.

4 C O N C LU S I O N S

A new approach to inverting MT data is proposed in this paper. This
method is based on the concept of maximizing the MI between the
conductivity map of the subsurface and a map relative to a reference
quantity. To achieve this goal, the joint probability distribution be-
tween conductivity and the reference quantity is computed, and its
entropy, defined as in information theory, is minimized. We applied
the proposed inversion method to a previously studied data set from
Central Germany, obtaining results that support the most up-to-date
interpretation of the subsurface structure in the studied area with
the crucial key addition of constraining the amount of electrical
anisotropy in the asthenosphere.

The optimal removal of distortion from the data generates high
statistical uncertainties in impedance tensor elements, and this effect
produces a final rms one half an order of magnitude smaller than that
expected. Nevertheless, the final model results are robust. Moreover,
the proposed inversion scheme provides a bounded constraint on the
resistivity in the resistive direction, effectively showing that the use
of a model from an independent data set as the reference has the
property of reducing the lack of sensitivity in resistive direction of
the MT method.

The joint probability distribution of the high conductivity strike
direction with the fast-axis azimuthal direction presents a clustered
pattern that provides further support for the hypothesis that the two
phenomena are generated by a concurrent source. Meanwhile, the
presence of an unaligned probability cluster suggests that there are
sources of electric anisotropy that do not affect the seismic fast
axis direction. A more accurate analysis is necessary to link these
observations to petrological–geophysical properties of the crust and
the upper mantle. Future work should focus on both 2-D and 3-D
inverse problems, providing the increased number of parameters that
characterizes these approach a better base in order to estimate the
joint probability distribution, improving in this way the integration
of different data.

Finally, interpretation of the highly unusual E–W direction for
both the seismic fast axis and the high conductivity direction in
the asthenosphere, given that the APM is NE–SW, has been further
established. The interpretation of this phenomenon is though beyond
the scope of this paper.
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A P P E N D I X A : E N T RO P Y A N D M U T UA L
I N F O R M AT I O N

In 1948 Shannon (1948) published two papers that are regarded
as the seed of the so-called ‘information theory’. Notwithstanding
the importance of this science branch on its own, in this section
we present the features we used in the solution of the MT inverse
problem.

Our interest in information theory stems from the ability to de-
fine a metric between images. In fact, if interpreted as images of
the subsurface, tomographic maps are all depicting from the same
source—the Earth interior—with each image carrying different in-
formation; thus, part of the information is shared between multiple
images (cf. e.g. Modersitzki 2004).

In information theory, the ‘self-information’ that an event A may
happen with probability pA is indicated by I(A) and is defined as:

I (A) := A → log
1

pA
= − log pA, (A1)

if the logarithmic function is base 2, I(A) is measured with ‘bin of in-
formation’. Other bases of measurement will be not considered here.
Moreover—as considered by information theory—the ‘entropy’ of
a random variable X, H(X), is the average of the self-information
I(xi) of its possible values (x1, x2, ..., xn):

H (X ) := E[I (xi )] =
n∑

i=1

p(xi ) log2

1

p(xi )
, (A2)

which follows from the definition H(X) ≥ 0∀X.
Intuitively, the relationship between a variable’s entropy and in-

formation can be imagined as follows: the more uncertain a ran-
dom variable is, the more information can be gained through its
measurement.

Dealing with two random variables X and Y, there are two other
interesting quantities to be considered. The ‘conditional entropy’
H(X|Y) is the entropy of the variable Y conditioned by X taking a
certain value x, and is the average of H(Y|X = x), over each value X
can assume.

H (X |Y ) :=
n∑

i=1

p(xi )H (Y |X = xi )

=
n∑

i=1

p(xi )
m∑

j=1

p(y j |xi ) log2

1

p(y j |xi )

= −
n∑

i=1

m∑
j=1

p(xi , y j ) log2 p(y j |xi )

=
∑
i, j

p(xi , y j ) log2

p(xi )

p(xi , y j )
, (A3)
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where p(x, y) indicates the joint probability distribution and p(x|y)
the conditional probability distribution of X and Y. The joint entropy
is defined as

H (X, Y ) :=
∑

x

∑
y

P(x, y) log2 P(x, y), with

lim
P(x,y)→0

P(x, y) log2 P(x, y) = 0, (A4)

being x and y values of X and Y respectively, and P(x, y) the proba-
bility that jointly X = x and Y = y.

It is possible define the mutual information (MI) I(X; Y) as

I (X ; Y ) :=
∑
y∈Y

∑
x∈X

p(x, y) log2

p(x, y)

p(x)p(y)
, (A5)

where p(x, y) is the joint probability distribution function of X and Y,
and p(x) and p(y) are the marginal probability distribution functions
of X and Y, respectively. MI can be expressed equivalently as

I (X ; Y ) = H (X ) − H (X |Y )

= H (Y ) − H (Y |X )

= H (X ) + H (Y ) − H (X, Y )

= H (X, Y ) − H (X |Y ) − H (Y |X ). (A6)

MI measures the information shared by X and Y. Alternatively,
it measures how much the knowledge of one variable can provide

about the other. For instance, if X and Y are independent then p(x,
y) = p(x)p(y) and MI = 0, while if X=Y then I(X; X) = H(X) the
information about X given from the knowledge of X itself is exactly
its entropy.

The metric distance between X and Y defined by MI, called ‘vari-
ation of information’, is defined as:

D(X, Y ) : = H (X, Y ) − I (X ; Y ) (A7)

= H (X ) + H (Y ) − 2I (X ; Y ). (A8)

Variation of information respects all the properties a distance
metric is required to uphold. In particular:

(i) D(X, Y ) ≤ D(X, Z ) + D(Z , Y );
(ii) D(X, Y ) ≥ |D(X, Z ) − D(Z , Y )|;
(iii) D(X, Y ) ≥ 0 ∀X, Y ;
(iv) D(X, Y ) = D(Y, X ).

Bearing these relation in mind, it is possible to define
a geophysical model as a picture. In fact, if the model is
discretized in cells, each cell can be seen as a pixel/voxel of an
image.
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