
1. Introduction
Joint inversions of two or more geophysical data sets are becoming common practice for imaging the Earth's 
interior and elucidating the physical state of the planet. When the inverted data sets have complementary sen-
sitivities to the properties of interest, joint inversions significantly reduce the ambiguity inherent in single-data 
set inversions, achieve more stable solutions, increase identifiability of features and enhance model resolution. 
Perhaps more importantly, certain properties of the Earth's interior can only be revealed by combining observa-
tions from different techniques. An example is the bulk composition of the lithospheric mantle, which requires 
independent constrains on the bulk density (e.g., from gravity data sets) and shear-wave velocity (e.g., from sur-
face-wave data). Recent discussions on the benefits and limitations of joint approaches for imaging the structure 
of the lithosphere and upper mantle can be found in, for example, Khan et al. (2006); Afonso, Fullea, Griffin, 
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et al. (2013); Afonso, Moorkamp, & Fullea (2016), and Moorkamp (2017). The joint inversion of magnetotelluric 
(MT) with seismic data (e.g., Afonso, Rawlinson, et al., 2016; Bennington et al., 2015; Gallardo & Meju, 2007; 
Jegen et al., 2009; Jones et al., 2017; Khan et al., 2006; Moorkamp et al., 2007, 2010; Vozar et al., 2014) is of 
particular interest as they offer complementary sensitivities to temperature, composition, and fluid/melt content 
that are impossible to obtain with other data sets (e.g., Afonso, Moorkamp, & Fullea, 2016; Afonso, Rawlinson, 
et al., 2016; Gallardo & Meju, 2007; Jones et al., 2009; Moorkamp et al., 2007, 2010; Selway et al., 2019).

In the context of whole-lithosphere structure, both seismic (or seismic plus gravity) and MT data can be used to 
put constrains on the background (or regional) thermal, and mineralogical structure (e.g., Afonso, Moorkamp, & 
Fullea, 2016; Afonso, Rawlinson, et al., 2016; Jones et al., 2009; Karato & Wang, 2013), but only MT is exponen-
tially sensitive to temperature, and strongly sensitive to hydrogen content, minor conductive phases, and/or small 
volumes of fluid or melt (Evans, 2012; Karato, 1990, 2006; Khan, 2016; Selway, 2014; Yoshino, 2010). There-
fore, while both data sets should converge toward a consistent view of the background thermochemical structure, 
they will diverge in regions where the electrical conductivity of rocks is affected by factors other than temperature 
or bulk composition. This makes MT + seismic joint inversions a powerful means to detect fluid pathways in 
the lithosphere (e.g., Evans et al., 2019; Selway & O'Donnell, 2019), including the locus of partial melting, ore 
deposits, and hydrated (or metasomatized) lithologies. This unique potential of joint MT + seismic inversions has 
also given impetus to the acquisition of collocated MT and seismic data over large regions. Concrete examples 
are the MAGIC and EarthScope USArray in USA (www.usarray.org), the AusLAMP program and AusArray in 
Australia (www.ga.gov.au/eftf/minerals/nawa), the IberArray (www.iberarray.ictja.csic.es/) in Europe, and the 
Sinoprobe in China (www.sinoprobe.org). These programs are providing high-quality seismic and MT data with 
unprecedented resolution and coverage, allowing the pursuit of large-scale 3D joint inversions for the physical 
state of the whole lithosphere and upper mantle.

The actual approach to the joint inversion of MT and seismic data is still a matter of much debate. While tradi-
tional deterministic methods are computationally efficient, they are not well suited to deal with the inherent non-
uniqueness of geophysical data sets, and MT data in particular (e.g., Mallick & Verma, 1979; Oldenburg, 1979; 
Parker, 1971, 1980; Wait, 1962). This is because resolution and/or global uncertainty analyses are difficult, if 
not impossible, to obtain (e.g., Afonso, Moorkamp, & Fullea, 2016; Ledo & Jones, 2005; Moorkamp, 2017). 
Probabilistic inversion methods represent an attractive alternative (Gregory, 2005; Mosegaard & Hansen, 2016; 
Tarantola, 2005) as they are less susceptible to the above-mentioned limitations and provide substantially more 
information on the parameters of interest via full probability distributions. In probabilistic or Bayesian approach-
es, the solution to the inverse problem is given by the so-called posterior probability density function (PDF) over 
the model parameter space. This PDF summarizes all the information about the unknown parameters and their 
uncertainties conditioned on the data and modeling assumptions. As such, it represents the most general solution 
to the inverse problem. For nonlinear problems and/or complex priors, the posterior PDF cannot be represent-
ed analytically and needs to be sampled point-wise using, for example, Markov chain Monte Carlo (MCMC) 
algorithms (Gilks et al., 1995; Gregory, 2005; Mosegaard & Tarantola, 1995; Tarantola, 2005). This particular 
sampling-based approach to probabilistic inversions makes them less efficient than deterministic approaches, as 
they typically require the numerical solution of millions of forward problems. When the forward problems are 
computationally expensive, probabilistic approaches can be rendered impractical.

Joint probabilistic inversions of MT and seismic data have been successfully implemented by, for example, Khan 
et al. (2006, 2008); Afonso, Fullea, Griffin, et al. (2013); Afonso, Fullea, Yang, et al. (2013) ; Vozar et al. (2014); 
and Jones et al. (2017) in the context of 1D MT data only. For the cases of 2D and 3D MT data, however, the 
large computational cost of the MT forward problem has been the main impediment for pursuing probabilistic 
inversions, as the number of forward solutions required are typically on the order of 105–107.

In recent years, various methods and strategies for reducing the cost of full forward solutions have been proposed 
(see reviews in Frangos et al., 2011; Peherstorfer et al., 2018). The general idea behind these methods is the 
construction of an approximation, called the low-fidelity or surrogate model, which can be used instead of, or 
combined with, the costly full forward or high-fidelity solution. Having a faster surrogate of the forward problem 
is beneficial in a number of contexts, but it is particularly attractive in the context of MCMC schemes used to es-
timate the posterior PDF in a probabilistic inversion (Christen & Fox, 2005; Conrad et al., 2016; Cui et al., 2015; 
Florentin & Díez, 2012; Manassero et al., 2020; Ortega-Gelabert et al., 2020; Zhang & Taflanidis, 2019). In 
traditional implementations, the surrogates are computed in an offline stage (prior to the probabilistic inversion) 
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at specific locations within the parameter space called “snapshots”. However, it has been shown recently (Cui 
et al., 2015; Manassero et al., 2020; Ortega-Gelabert et al., 2020; Yan & Zhou, 2019; Zhang & Taflanidis, 2019) 
that in the context of high- and ultra-high-dimensional probabilistic inversions, it is practically impossible to 
pre-explore the parameter space in an offline stage to create surrogates that will guarantee accurate solutions 
within the so far unknown high-probability regions. In these situations, an adaptive MCMC approach where the 
surrogate is refined online during the MCMC simulation is a more effective and efficient approach.

A strategy to reduce the computational cost of the 3D MT forward solver and perform full probabilistic 3D MT 
inversions has recently been presented by Manassero et al.  (2020). This novel strategy, called Reduced Basis 
(RB) + MCMC, combines (a) an efficient parallel-in-parallel structure to solve the 3D MT forward problem, (b) a 
Reduced Basis Method to create fast and accurate surrogate models of the high-fidelity solution, and (c) adaptive 
strategies for both the MCMC algorithm and the surrogate model.

This paper builds on our previous work (Manassero et  al., 2020) and presents the first joint inversion of 3D 
magnetotelluric and surface-wave data within the context of MCMC-driven, fully probabilistic inversions. Spe-
cifically, we focus on a realistic 3D mapping of the electrical conductivity structure of the lithosphere including 
the locus of deep thermochemical anomalies and fluid pathways. We adopt the RB + MCMC strategy to compute 
3D MT surrogate models and propose complementary parameterizations to couple both data sets. Using realistic, 
whole-lithosphere synthetic models, we demonstrate the benefits and general capabilities of our method for 3D 
joint probabilistic inversions of MT with surface-wave data in particular, and with other data sets in general.

2. Bayesian Inversion
Within the context of Bayesian inference, the most general solution to the inverse problem is represented by a mul-
tidimensional probability density function (PDF) over the combined parameter-data space (cf. Gilks et al., 1995; 
Gregory, 2005; Kaipio & Somersalo, 2006; Mosegaard & Hansen, 2016; Mosegaard & Tarantola, 2002; Taran-
tola & Valette, 1982). This distribution is known as the posterior PDF and can be thought of as an objective 
measure of our best state of knowledge on the problem at hand. It is obtained as a conjunction of the available 
information on the model parameters (m), the data (d), and their uncertainties. In particular, the conditional prob-
ability density for the model parameters given the observed data, P(m|d), is formally given by

𝑃𝑃 (𝐦𝐦|𝐝𝐝) ∝ (𝐦𝐦)𝑃𝑃 (𝐦𝐦). (1)

where P(m) is a PDF encoding a priori information on the parameter space (what we know or believe about the 
unknown model parameters prior to considering the actual data) and 𝐴𝐴 (𝐦𝐦) is the so-called likelihood function, 
which describes the probability of obtaining the observed data d given m. In general, P(m|d) will be nonlinear 
and high-dimensional (and possibly multipeaked), with no simple analytical description. When this is the case, 
unbiased approximations of P(m|d) are commonly obtained via Markov chain Monte Carlo (MCMC) methods 
(Gilks et al., 1995; Gregory, 2005; Mosegaard & Tarantola, 1995; Tarantola, 2005). These types of algorithms 
are designed to output a large population of models (more precisely, a Markov chain) that has P(m|d) as its equi-
librium distribution. They do so by randomly and repeatedly drawing models mt and evaluating their posterior 
probability P(mt|d) (via solution of the forward problem). A large number of MCMC methods have been pro-
posed in the literature, all with relative merits and drawbacks. We refer the reader to the excellent monographs by, 
for example, Tarantola & Valette (1982); Gilks et al. (1995); Gregory (2005); Calvetti & Somersalo (2007); and 
Mosegaard & Hansen (2016) for in-depth treatments of Bayesian and MCMC methods applied to inverse prob-
lems. In the following, we restrict ourselves to describing only the most relevant theoretical and computational 
aspects for our purposes.

2.1. The Likelihood Function

The construction of an appropriate likelihood function 𝐴𝐴 (𝐦𝐦) is a critical part of any Bayesian inference problem. 
𝐴𝐴 (𝐦𝐦) is typically specified by the distribution of the data uncertainty, which includes both observational and 

modeling errors. In most cases, observational errors are relatively straightforward to model. Modeling errors, on 
the other hand, are more complex (and commonly ignored in most geophysical studies) to describe and typically 
involves exploratory assessments of both numerical errors-for example, convergence analyses - and Monte Car-
lo estimates of the correlations between different data sets (see discussions and approaches in Afonso, Fullea, 
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Griffin, et al., 2013; Gouveia & Scales, 1998). In the convenient (and most popular) case where both observa-
tional and modeling errors can be assumed to be approximately Gaussian, the likelihood function takes the form:

(�) ∝ exp
(

−1
2
(�(�) − �)��−1(�(�) − �)�

)

= exp(�), (2)

where C is the data covariance matrix and g(m) denotes the data predicted by the forward problem for model m. 
The term ϕ within the parenthesis in Equation 2 is commonly referred to as the misfit of model m.

If the data errors are uncorrelated, C is a diagonal matrix and the misfit can be written as

� = −1
2

�
∑

�=1

(

��(𝐦𝐦) − ��(𝐦𝐦)
��

)2

 (3)

where N is the total number of data and si denotes the standard deviation for the ith data error.

A more robust and often more realistic assumption (e.g., in the case of MT data Farquharson & Oldenburg (1998); 
Rosas-Carbajal et al. (2013)) is that data errors follow a Laplace (double exponential) distribution. In this situa-
tion, and considering uncorrelated data errors, the data misfit is given by Tarantola (2005)

𝜙𝜙 = −
𝑁𝑁
∑

𝑖𝑖=1

|𝑔𝑔𝑖𝑖(𝐦𝐦) − 𝑑𝑑𝑖𝑖(𝐦𝐦)|
𝑠𝑠𝑖𝑖

. (4)

In the case of joint inversions of independent observational data sets, the likelihood function can be written as the 
product of partial likelihoods:

(𝐦𝐦) =
∏

𝑗𝑗(𝐦𝐦), (5)

where 𝐴𝐴 𝑗𝑗 refers to the likelihood associated with the data set dj. The assumption of independent observational data 
is well justified in most practical situations, and in particular in the MT + seismic case discussed in this paper, 
as different data sets are commonly gathered in separate surveys using different instrumentation. An important 
practical advantage of the factorization of the likelihood into partial likelihoods (Equation 5) is that it makes it 
possible to adopt a Cascaded Metropolis (CM) approach (Hassani & Renaudin, 2013; Tarantola, 2005), which is 
typically more efficient than a standard Metropolis-Hastings algorithm applied to the total likelihood.

2.2. Cascaded-Metropolis Algorithm

The CM algorithm is particularly useful when the different data sets jointly inverted are independent, have com-
plementary sensitivities to different aspects of the problem, and at least one of the forward solvers is more compu-
tationally demanding than the others. The basic idea is to apply a Metropolis criterion sequentially to each partial 
posterior (prior × partial likelihood), which becomes an updated prior in the evaluation of the subsequent partial 
posterior (e.g., Hassani & Renaudin, 2013, 2018). The practical benefits of the above procedure are significant 
when the partial likelihoods are arranged in order of computational complexity or cost, as there is no need to 
compute expensive forward solutions for models that are rejected early in the sequence (see e.g., Tarantola, 2005, 
for further details).

The basic procedure for the case of two forward operators is as follows: For a new sample mt, the first partial pos-
terior 𝐴𝐴 𝐴𝐴1(𝐦𝐦𝑡𝑡|𝐝𝐝) = 1(𝐦𝐦𝑡𝑡)𝐴𝐴 (𝐦𝐦𝑡𝑡) is always computed using the computationally inexpensive forward solution. If 
P1(mt|d) > P1(mt−1|d), this first posterior becomes a prior in the evaluation of the second partial posterior, which 
is now obtained from the expensive forward:

𝑃𝑃2(𝐦𝐦𝑡𝑡|𝐝𝐝) = 2(𝐦𝐦𝑡𝑡)𝑃𝑃1(𝐦𝐦𝑡𝑡|𝐝𝐝). (6)

If P1(mt|d) < P1(mt−1|d), the algorithm randomly decides to evaluate P2(mt|d) or to reject the proposed moved 
with a probability P = P1(mt|d)/P1(mt−1|d) of going to the second step. At the second step, the acceptance of the 
proposed move is computed as in the standard Metropolis-Hastings algorithm. In this work, P1(mt|d) and P2(mt|d) 
correspond to the surface-wave dispersion solver and the 3D MT solver, respectively (see details in Section 3).
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We will also make use of the Adaptive Metropolis (AM) approach of Haario et al. (2001) to ameliorate the prob-
lem of choosing an optimal proposal before the start of the MCMC simulation and to obtain a more efficient sam-
pling strategy of the parameter space that exploits correlations in the model parameters. We leave the presentation 
of this method to Section 5, where the general sampling strategy is discussed in detail.

3. Forward Problems
3.1. The Magnetotelluric Forward Problem

In this section, we introduce the 3D magnetotelluric (MT) forward problem, the finite element high-fideli-
ty solver and the RB  +  MCMC approach to compute surrogate solutions. The reader is referred to Douglas 
et al. (1999, 2000) and Zyserman and Santos (2000) for an in-depth treatment of the theory behind the formula-
tion of the 3D MT problem and to Manassero et al. (2020) for a detailed description of the surrogate approach.

3.1.1. High-Fidelity Solver for the MT Forward Problem in 3D

Using the secondary field formulation of Douglas et al.  (1999, 2000) and the absorbing boundary conditions 
defined by Sheen (1997), the MT forward problem in 3D is defined as follows:

Find E and H such that

�� − ∇ ×� = −� in Ω, (7a)

���0� + ∇ × � = 0 in Ω, (7b)

(1 − �)���� + � ×� = 0 on �Ω ≡ Γ, (7c)

where E is the electric field [V/m]; H is the magnetic field (A/m); μ0 is the magnetic permeability of free space 
(Vs/Am); σ is the electrical conductivity (S/m) of the medium 𝐴𝐴 Ω ∈ ℝ3 , and Γ ≡ ∂Ω is the boundary of the domain 
Ω. a is defined as 𝐴𝐴 𝐴𝐴 = (𝜎𝜎∕2𝜔𝜔𝜔𝜔0)1∕2 and Pτφ = φ − ν(ν ⋅φ) is the projection of the trace of any vector φ on Γ where 
ν is the unit outer normal to Γ.

High-fidelity numerical solutions to Equation 7 are sought via an optimized version of the finite element (FE) 
code developed by Zyserman & Santos (2000). In this optimized version, once the variational formulation of 
Equation 7 is discretized in terms of the FE shape functions, Equation 7 are converted into the following linear 
system of equations:

𝕂𝕂𝐔𝐔 = 𝐅𝐅, (8)

where 𝐴𝐴 𝕂𝕂𝑁𝑁𝐹𝐹𝐹𝐹×𝑁𝑁𝐹𝐹𝐹𝐹 is a sparse and symmetric matrix (the so-called FE stiffness matrix) and NFE is the number of 
degrees of freedom (usually very large). 𝐴𝐴 𝐅𝐅𝑁𝑁𝐹𝐹𝐹𝐹×1 is the force vector and 𝐴𝐴 𝐔𝐔𝑁𝑁𝐹𝐹𝐹𝐹×1 is a vector containing the unknown 
coefficients for the electric field in the whole domain. In Manassero  (2019) and in the Supporting  Informa-
tion S1, we present typical benchmarks (using models with strong resistivity contrasts) aiming at comparing 
the solution and the computational efficiency of this optimized version with other available codes. Additional 
benchmarks of the original code can be found in Zyserman and Santos (2000).

In MT, the numerical forward solution for a conductivity model requires the computation of two (typically or-
thogonal) components of the electromagnetic (EM) fields per frequency. Here, these components are referred to 
as 𝐴𝐴 𝐔𝐔𝑆𝑆𝑖𝑖 and 𝐴𝐴 𝐔𝐔𝑆𝑆𝑖𝑖

⟂ , for a frequency i. Once these solutions are computed, their coefficients and the FE shape func-
tions are used to derive the electric and magnetic fields in the whole domain and at the surface of the Earth (for 
comparison with the observed data). It is worth noting that although the EM fields that satisfy Equation 7 are 
the actual solution to the forward problem, we will refer to the vector U (either 𝐴𝐴 𝐔𝐔𝑆𝑆𝑖𝑖 or 𝐴𝐴 𝐔𝐔𝑆𝑆𝑖𝑖

⟂ ) as the high-fidelity 
solution to the forward problem.

As previously mentioned, the overall cost of computing the high-fidelity solution has been the main limitation 
preventing probabilistic inversions of 3D MT data. In the following section, we briefly describe the RB + MCMC 
strategy introduced in our previous paper (Manassero et al., 2020) to obtain fast and accurate approximations of 
the high-fidelity solutions.
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3.1.2. Surrogate Solutions: A Reduced Basis + MCMC Approach

The RB + MCMC approach combines three main elements (a) a RB method to obtain fast approximations of the 
high-fidelity solution; (b) an MCMC algorithm that drives the sampling of the parameter space, and (c) an effi-
cient parallel-in-parallel structure to solve the 3D MT forward problem (for both the surrogate and high-fidelity 
solvers). The first level of parallelization is defined by frequency, that is, different processors are in charge of 
computing the forward solution for different frequencies. The second level of parallelization includes a group of 
processors linked to each frequency, which compute (when needed) the costly high-fidelity solutions using the 
parallel solver MUMPS (Amestoy et al., 2001, 2006).

The general idea behind RB approaches is to seek for surrogate solutions as projections onto a space of small 
dimensionality, referred to as the reduced basis. We generate a reduced basis space 𝐴𝐴  per frequency and field 
orientation, with dimension NRB ≪ NFE and basis vectors Vj. These bases are high-fidelity solutions of Equation 8 
for specific realizations θ of the conductivity model, σ(x, θ). In contrast to traditional RB approaches, these bases 
are not sampled in a preinversion stage, but rather during the MCMC inversion. In this way, each 𝐴𝐴  is automat-
ically updated (enriched) by adding new bases as needed during the evolution of the MCMC chain. This online 
enrichment approach circumvents the need of costly offline stages to build the reduced basis and increases the 
overall efficiency of the method (e.g., Manassero et al., 2020).

In the following, we summarize the main steps of the RB + MCM procedure. Note that items (1) − (4) are imple-
mented per frequency i and field orientation (Si and 𝐴𝐴 𝐴𝐴𝑖𝑖

⟂ ):

1.  If there are bases available from an offline stage or from a preliminary probabilistic inversion, we load these 
bases as the initial basis matrix 𝐴𝐴 𝕍𝕍ℝ𝔹𝔹 . Otherwise, we compute the high-fidelity solution of the starting model 
of the Markov chain and add it as a column vector in the initial 𝐴𝐴 𝕍𝕍ℝ𝔹𝔹 .

2.  For a new sample mt = σ(x, θ), we first seek for a surrogate solution to the forward problem by solving

𝕂𝕂ℝ𝔹𝔹(𝜃𝜃)𝐚𝐚 = 𝐅𝐅𝐑𝐑𝐑𝐑(𝜃𝜃) (9)

 for the coefficients a(θ); where 𝐴𝐴 𝕂𝕂ℝ𝔹𝔹(𝜃𝜃)𝑁𝑁𝑅𝑅𝑅𝑅×𝑁𝑁𝑅𝑅𝑅𝑅 = 𝕍𝕍ℝ𝔹𝔹𝑇𝑇 𝕂𝕂(𝜃𝜃)𝕍𝕍ℝ𝔹𝔹 is the RB matrix, 𝐴𝐴 𝐅𝐅𝐑𝐑𝐑𝐑(𝜃𝜃)𝑁𝑁𝑅𝑅𝑅𝑅×1 = 𝕍𝕍ℝ𝔹𝔹𝑇𝑇 𝐅𝐅(𝜃𝜃) is 
the RB force vector, and 𝐴𝐴 𝕍𝕍𝑁𝑁𝐹𝐹𝐹𝐹×𝑁𝑁𝑅𝑅𝑅𝑅

ℝ𝔹𝔹 = [𝐕𝐕1,𝐕𝐕2,… ,𝐕𝐕𝑁𝑁𝑅𝑅𝑅𝑅 ] is the matrix of basis vectors of 𝐴𝐴  . The surrogate 
solution, URB(θ), is then found as a linear combination of the basis vectors in 𝐴𝐴  by substituting the coeffi-
cients a(θ) into the following equation:

𝐔𝐔𝐑𝐑𝐑𝐑(𝐱𝐱, 𝜃𝜃) =
𝑁𝑁𝑅𝑅𝑅𝑅
∑

𝑗𝑗=1

𝑎𝑎𝑗𝑗(𝜃𝜃)𝐕𝐕𝑗𝑗 = 𝕍𝕍ℝ𝔹𝔹𝐚𝐚(𝜃𝜃). (10)

 Since the linear system of equations in Equation 9 is of size NRB ≪ NFE, its computational cost is only a small 
fraction of the time consumed in solving Equation 8.

3.  The following relative error is computed to assess the accuracy of the surrogate (Hesthaven et  al.,  2016; 
Quarteroni et al., 2015):

𝐑𝐑𝐑𝐑𝐑𝐑∶=
‖𝕂𝕂𝐔𝐔𝐑𝐑𝐑𝐑 − 𝐅𝐅‖

‖𝐅𝐅‖
, (11)

 where ‖ ⋅ ‖ is the L2 norm.
4.  The surrogate solution is considered admissible if RRB ≤ β for a prescribed tolerance β.
5.  If all the errors RRB are smaller than β, we accept 𝐴𝐴 𝐔𝐔𝐑𝐑𝐑𝐑𝑆𝑆𝑖𝑖 and 𝐴𝐴 𝐔𝐔

𝐑𝐑𝐑𝐑𝑆𝑆𝑖𝑖⟂
 as acceptable approximations of the high-fi-

delity solution for all frequencies. In this case, the corresponding approximate likelihood, 𝐴𝐴 ̄2(𝐦𝐦𝑡𝑡) , is computed 
and the sample is either accepted or rejected according to the Metropolis-Hastings (MH) criterion.

6.  In the case of any RRB ≫ β, the high-fidelity FE solution for that frequency and component of the EM field is 
computed for mt and added as a new basis vector to enrich the corresponding space 𝐴𝐴 𝑅𝑅𝑅𝑅 . Since the posterior 
probabilities of the proposed sample mt and that of the current sample mt−1 are no longer comparable (i.e., 
they were computed with different solvers, FE and RB, respectively), we recompute the surrogate solution 
(and the associated likelihood) at sample mt−1 using the newly enriched RB space. If mt is rejected by the 
MH criterion, a new trial 𝐴𝐴 𝐦𝐦∗

𝑡𝑡  is proposed in the vicinity of mt and its likelihood is computed with the newly 
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enriched RB space. This new trial 𝐴𝐴 𝐦𝐦∗
𝑡𝑡  is accepted/rejected according to a modified Metropolis ratio to account 

for the delayed rejection (i.e., two proposals) step (see e.g., Haario et al., 2006; Mira, 2001).

As explained in Manassero et al. (2020), the last step above is required to preserve the ergodicity of the algorithm, 
but it is not the only possible option. We refer the reader to our previous work (Manassero et al., 2020) for further 
details on the combined RB + MCMC approach and additional functionalities to improve the efficiency of the 
method (e.g., use of variable tolerances and Singular Value Decomposition of the basis).

3.2. The Surface-Wave Forward Problem

Surface waves (SW) provide one of the most valuable data sets to study the lithospheric structure (e.g., Afon-
so, Fullea, Griffin, et al., 2013; Huang et al., 2009; Yang et al., 2008). One of the most common approaches 
involves (a) the generation of dispersion curves or 2D phase velocity maps at a number of periods via seismic 
tomography and (b) the subsequent 1D inversion of local dispersion curves for the shear velocity structure at 
depth (e.g., Afonso, Rawlinson, et al., 2016; Bensen et al., 2009; Ritzwoller et al., 2002; Shen et al., 2013; Yang 
et al., 2008). Here, we do not deal with the tomography part, for which many approaches are possible and cov-
ered in detail elsewhere, and consider only the inversion of dispersion curves. The relevant forward problem is 
therefore the computation of dispersion curves as functions of 1D vertical velocity structures, for which we use a 
modified version of the forward code disp96 (Afonso, Fullea, Yang, et al., 2013; Afonso, Rawlinson, et al., 2016; 
Herrmann & Ammon,  2002). We compute anelastic wave velocities (Vs and Vp) of mantle rocks as (Afonso 
et al., 2005, 2008, 2010):

�� = ��0(� , � )[1 − (1∕2)cot(��∕2)�−1
� (��, � , � , �)], (12)

�� = ��0(� , � )[1 − (2∕9)cot(��∕2)�−1
� (��, � , � , �)], (13)

where Vs0 and Vp0 are the unrelaxed, high-frequency (anharmonic) wave velocities at a given temperature (T) and 
pressure (P) (cf. Afonso et al., 2010). Without loss of generality, here we compute them as

𝑉𝑉𝑝𝑝0 = 𝑉𝑉 𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝 +

𝜕𝜕𝑉𝑉𝑝𝑝

𝜕𝜕𝜕𝜕
Δ𝜕𝜕 +

𝜕𝜕𝑉𝑉𝑝𝑝

𝜕𝜕𝜕𝜕
Δ𝜕𝜕 𝑃 (14)

𝑉𝑉𝑠𝑠0 = 𝑉𝑉 𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠 + 𝜕𝜕𝑉𝑉𝑠𝑠

𝜕𝜕𝜕𝜕
Δ𝜕𝜕 + 𝜕𝜕𝑉𝑉𝑠𝑠

𝜕𝜕𝜕𝜕
Δ𝜕𝜕 𝑃 (15)

where 𝐴𝐴 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝  and 𝐴𝐴 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠  are reference velocities at Tref and Pref; ΔT = T − Tref and ΔP = P − Pref. The factor 𝐴𝐴 𝐴𝐴−1
𝑠𝑠  is 

obtained as (Jackson & Faul, 2010; Jackson et al., 2002)

�−1
� = �

[��

�
exp

(−� + � �
��

)]�
, (16)

where To is the oscillation period, d is grain size, E is the activation energy, V is the activation volume, α is an 
empirical exponent, A is a pre-exponential constant and R is the universal gas constant. Although more sophisti-
cated/realistic approaches for computing anelastic seismic velocities are possible (e.g., Afonso, Fullea, Griffin, 
et al., 2013; Afonso, Fullea, Yang, et al., 2013; Khan et al., 2008; Matas & Bukowinski, 2007; Vozar et al., 2014), 
the set represented by Equations 12–16 is sufficient for the goals of this paper.

4. Model Parameterization and Discretization
A key difficulty in the joint inversion of two or more disparate geophysical data sets is how to define the interde-
pendence between model parameters in an internally consistent manner. For instance, if our goal was to jointly 
invert first arrivals of compressional waves (Vp) and gravity anomalies (a common approach in geophysics), 
we would need to answer the following question: how is Vp related to bulk density in our medium? A typical 
assumption in this case is considering a linear correlation between Vp and density (e.g., Birch, 1961, 1964; Feng 
et al., 1986; Yasar & Erdogan, 2004). While this is a popular and practical assumption, the actual relationship 
between Vp and density also depends on temperature, pressure, and bulk composition (see e.g., Afonso, Fullea, 
Griffin, et al., 2013; Guerri et al., 2016). Several authors therefore distinguish between primary and secondary 
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parameters (e.g., Afonso, Fullea, Griffin, et al., 2013; Bosch, 1999; Khan et al., 2006). The latter are the most 
commonly used in geophysical inversions and refer to those that enter the governing equations of the forward 
problems (e.g., Vp, density, electrical conductivity); the former are more fundamental in their nature and thus 
control the values of the secondary ones (e.g., temperature, porosity, and pressure).

In the case of joint inversions of SW and MT data, the primary parameters controlling both the seismic veloci-
ties and electrical conductivity (σ) in the mantle are temperature (T), bulk major-element composition (C), and 
pressure P (e.g., Evans, 2012; Fullea et al., 2011; Jones et al., 2009; Selway, 2014). Using empirically calibrated 
equations of state of the type Vp(T, P, C), Vs(T, P, C), and σ(T, P, C), and thermodynamic constraints, we can 
establish direct relationships between the primary and secondary parameters (Bosch, 1999; Fullea et al., 2011; 
Jones et al., 2009; Khan et al., 2006; Xu et al., 2000; Yoshino, 2010). Since the electrical conductivity is also 
highly sensitive to hydrogen content, minor conductive constituents and localized melt/fluid pathways, we can 
explicitly write σ(T, P, C, X), where X stands for any factor other than the bulk major-element composition of 
the rock. This distinction emphasizes the fact that although both seismic velocities and electrical conductivity 
can constrain the background T-P-C field, the electrical conductivity offers sensitivity to additional factors. The 
chosen model parameterization should thus be able to accommodate representative variations in both primary 
parameters (that simultaneously control Vp, Vs, and σ) and those responsible for conductivity anomalies above the 
background values. At the same time, as in any other inverse geophysical problem, the choice of model param-
eterization needs to be based on the principles of (a) flexibility, (b) parsimony, (c) parameter identifiability, and 
(d) suitability for the intended use.

With all of these in mind, and given our particular interest in lithospheric-scale imaging, we focus on a mixed pa-
rameterization of the conductivity distribution as the superposition of two contributions: a background conductiv-
ity related to the long-wavelength thermo-physical state of the lithosphere and an anomalous conductivity distri-
bution associated with the presence of features such as fluid pathways, melt-rich regions, hydrogen-rich domains, 
anomalous mineral assemblages, etc. Following Afonso, Fullea, Griffin, et al. (2013); Afonso, Fullea, Yang, et al. 
(2013), we choose the depth to the lithosphere-asthenosphere boundary (LAB) and the bulk mantle composition 
as the main model parameters to constrain the background velocity and conductivity structures. We discuss this 
parameterization in more detail in Section  4.1. In order to account for smaller-scale conductivity anomalies 
superimposed on the background, we use a more standard parameterization based on conductivity nodes. This 
parameterization is only relevant to the MT forward problem and it is described in detail in Section 4.2. As shown 
in the numerical examples of Section 6, the advantage of using this combined parameterization is that a rapid 
convergence is achieved by using the LAB depths to constrain the first-order conductivity background at the be-
ginning of the inversion. Once this first-order convergence has been achieved, the nodal values are used to locally 
modify the background to fit the smaller-scale features of the data.

4.1. Background Parameterization

The 3D numerical model is made up of a collection of Mcol columns (see Figure 1b). Each individual column 
is characterized by its own LAB depth. Here, we identify the LAB with the depth to the 1250°C isotherm (cf. 
Afonso, Moorkamp, & Fullea, 2016). In order to obtain the background conductivity structure from the LAB 
structure, we first compute the thermal profile of each column by solving the steady-state heat transfer problem 
with Dirichlet boundary conditions at the surface (T0 = 10°C) and bottom of the lithosphere (TLAB = 1250°C). For 
simplicity, we assume a linear temperature gradient between the LAB and 410 km depth, where the temperature is 
fixed at T410 = 1550°C. This gradient is extrapolated to the bottom of the numerical domain (460 km). A pressure 
profile is also computed in each column using the following quadratic lithostatic-type approximation:

𝑃𝑃 (𝑧𝑧) = 0.99 × (4.4773 × 10−3𝑧𝑧2 + 3.2206 × 104𝑧𝑧 − 1.284278 × 108), (17)

where P is pressure in Pa and z is depth in meters.

As a further simplification, we assume a dry and homogeneous mantle composition with the following mineral 
modes: 56, 18.2,10.8, and 15 vol% for olivine, orthopyroxene, clinopyroxene, and garnet, respectively. This is 
a standard mantle composition and it can be changed depending on the nature of the study area. While more 
realistic/sophisticated approaches to map major-element composition into mineral phases should be used when 
working with real data (e.g., Khan et al., 2006; Afonso, Fullea, Griffin, et al., 2013; Afonso, Fullea, Yang, et al., 
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2013; Afonso, Rawlinson, et al., 2016; Jones et al., 2017), this simplification does not affect the main results and 
conclusions of this paper. The electrical conductivity for each mineral phase is obtained using Equations A3a, 
A3b, and A3c with parameters specified in Table A1 and the bulk electrical conductivity (i.e., that of the mineral 
aggregate or rock) of each FE cell in the mantle is computed using the Hashin-Shtrikman averaging scheme 
(Hashin & Shtrikman, 1962, 1963).

For the surface-wave dispersion problem, each 1D column is further subdivided into 60 layers, each with constant 
density and wave velocities. The density of each layer is computed as a function of T and P values at the depth 
of its midpoint as follows:

𝜚𝜚(𝑃𝑃 𝑃 𝑃𝑃 ) = 𝜚𝜚0 + 1 − 𝛼𝛼(𝑃𝑃 − 𝑃𝑃0) + 𝜂𝜂(𝑃𝑃 − 𝑃𝑃0)𝑃 (18)

with ϱ0 = 3,355 kg/m3, T0 = 10°C, P0 = 0 Pa, α = 3.6 × 10−5 1/°C, and η = 1.1 × 10−111/Pa. For a particular layer, 
the Vp and Vs are obtained using Equations 12 and 13 with the following values: Av = 750 s−α μmα, α = 0.26, 
E = 424 kJ mol−1, V = 1.3 × 10−5 m3 mol−1, and grain size d = 5.0 μm. Given the periods of interest for sur-
face waves, we adopt To = 50 s in Equation 16 (Lebedev & Van Der Hilst, 2008; Liu et al., 1976; Moorkamp 
et  al.,  2020). The values for the parameters used in Equations 14 and 15 are listed in Table 1 (after Afonso 
et al., 2010).

4.2. Node-Based Parameterization

Any conductivity anomaly that departs from the background is described 
with Nnodes nodes located within the numerical domain. In order to define 
the nodal locations (Figure 8c), the domain is first subdivided into horizontal 
layers of variable thickness. The midpoints of these layers correspond to the 
nodal depths. The horizontal distance between different locations within each 
layer is chosen relative to the mesh size and skin depth for the range of pe-
riods and apparent resistivities shown in the observed data (see for example 
Figure 4). The parameters of interest to be retrieved by the inversion are the 
conductivity values of these nodes. During the probabilistic inversion, the 
nodal values are interpolated to each FE cell of the numerical domain via 

Figure 1. 3D views of the true conductivity structure where the iso-surface of −2.8 log10 S/m is plotted as a reference. The white rectangle in (a) indicates the region 
used for the inversion. Panel (a) illustrates the 20 × 20 station-grid in black and eight of the 400 stations (black triangles). The model parameters are the depths to 
the LAB of 324 columns. Panel (b) displays the location of these columns (white small squares) and 96 column-parameters as a reference. The reader is referred to 
Section 4.1 for details on the parameterization.

Tref 800.0°C

Pref 0 Gpa

∂Vp/∂T −5.1 × 10−4 (km/sC)

∂Vp/∂P 0.110 (km/sGPa)

∂Vs/∂T −3.3 × 10 − 4 (km/sC)

∂Vs/∂P 0.03 (km/sGPa)

Table 1 
Parameters Used in the Computation of Vs0 and Vp0
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kriging interpolation (see e.g., Cressie, 1993; Omre, 1987; Williams & Rasmussen, 1996) using spatially varying 
correlation lengths (Section B1). Details about the implementation of the interpolation are given in Appendix B.

Intuitively, the range of anomalous conductivity values for the nodes should allow for positive and negative per-
turbations with respect to the background. However, as the electrical conductivity values can span several orders 
of magnitude, nodal values are typically obtained from proposal distributions defined in logarithmic scale (e.g., 
Jeffreys and log-normal distributions). Since the domain of the logarithmic function is the set of all positive real 
values, the sampled anomalous conductivity values (in linear scale) are always positive. Alternatively, one could 
consider the sign of the anomaly at each node as an additional parameter to be recovered by the inversion, but 
this option would double the number of model parameters. In practice, the use of positive anomalies is not a lim-
itation, as resistive structures (i.e., negative deviations from the background) are generally determined solely by 
changes in the thermo-physical state (e.g., temperature and/or composition changes) whereas anomalous features 
of interest, such as presence of melt and/or fluid, hydrogen content, grain-boundary graphite films, and inter-
connected sulfides produce positive conductivity anomalies (e.g., Hu et al., 2017; Selway, 2014). Considering 
positive anomalous values over the background is therefore sufficient to represent any feature of interest while 
keeping the number of parameters small.

4.3. A Note on the Combined Background + Nodes Parameterization

The current combined parameterization is specifically tailored to constrain the first-order conductivity back-
ground and to locally accommodate smaller-scale anomalies. This parameterization also allows for considerable 
model variance/flexibility, as it is capable of approximating any conductivity structure, and it favors a rapid 
convergence at the beginning of the inversion. However, it is difficult to know a priori the optimal number of pa-
rameters necessary to retrieve the true model. An over-parameterization of the model can seriously compromise 
the convergence of the MCMC algorithm, whereas an under-parameterization can introduce spurious features 
in regions where the conductivity nodes are far from each other (since the kriging-like interpolation produces 
spurious values where poor or no information from the surrounding nodes is available; see Appendix B and B1).

In practice, these issues are addressed by running preliminary inversions (similar to what is done in determinis-
tic inversions with the variance-resolution trade-off diagram; Menke, 2018). A more efficient approach would 
be to implement transdimensional algorithms (e.g., Brodie & Jiang, 2018; Bodin & Sambridge, 2009; Ray & 
Myer, 2019), where the optimal dimensionality of the problem is identified as required by the data. In particular, 
the combination of the kriging interpolation (also known as Gaussian process regression) with a transdimensional 
algorithm is a promising approach (e.g., Ray & Myer, 2019) that warrants further investigation.

5. Sampling Strategy
The sampling strategy is specifically tailored to take advantage of the differential sensitivities of the SW and MT 
data sets to the conductivity structure of the lithosphere. With this in mind, we subdivide the MCMC inversion 
into four main stages. The first stage aims to constrain the background conductivity associated with the first-order 
temperature structure defined by the LAB depths (if we were interested in inverting for bulk chemical composi-
tion, we would also sample this parameter). In the second stage, conductivity anomalies over the background start 
to be sampled. During these first two stages, we sample both the LAB depths and the conductivity nodes using a 
metropolized-independent sampler (Tierney, 1994) where the proposal does not depend on the current state. Once 
enough information (i.e., enough samples) has been acquired for both sets of parameters, we incorporate ergodic 
adaptive strategies (Haario et al., 2001, 2006) to efficiently sample the full parameter space during the third and 
fourth stages. We briefly describe each of these stages below.

5.1. First Stage: Focus on Background Fields

1.  Randomly select a column in the 3D domain using a metropolized-independent sampler.
2.  Randomly propose an LAB depth for that column from its proposal distribution.
3.  Recompute the temperature and pressure profiles and update the conductivity and wave velocities (mt), as 

explained in Section 4.1.
4.  Evaluate the first partial likelihood P1(mt|d) with the SW solver.
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5.  Evaluate P2(mt|d) with probability P = P1(mt|d)/P1(mt−1|d) using the MT forward solution:
 (a)  Seek for a surrogate RB solution to the 3D MT forward problem (Section 3.1.2).
 (b)  If RRB < β for all frequencies, mt is accepted or rejected according to the Metropolis-Hastings criterion.
 (c)  If any RRB > β, the high-fidelity FE solution is computed at mt. The RB surrogate is recomputed at mt−1 

and the algorithm proposes a new move in the vicinity of mt whose acceptance is evaluated with a De-
layed Rejection criterion (Section 3.1.2).

5.2. Second Stage: Conductivity Nodes Begin to Be Sampled

When the number of MCMC steps reaches a predefined number of simulations (LAB-stage):

1.  Randomly chose a type of parameter to sample (i.e., LAB depths or nodes) at each MCMC step.
2.  If chosen parameter = LAB, the algorithm follows the first stage.
3.  If chosen parameter = conductivity nodes:

 (a)  Randomly select n1 nodes at a time, with all nodes having the same probability of being chosen.
 (b)  Assign a random conductivity value to each node from their individual proposal distributions.
 (c)  Update the 3D conductivity model via kriging interpolation.
 (d)  P1(mt|d) remains unchanged, that is, it only changes when a new LAB value is proposed.
 (e)  Evaluate P2(mt|d) with the MT solver following items (a–c) of the first stage.

5.3. Third Stage: Adaptive Strategy for the LAB Depths

When the number of MCMC steps reaches a predefined number of simulations (LAB-adapt):

1.  Compute a new multivariate Gaussian proposal distribution (via the Adaptive Metropolis algorithm of Haario 
et al. (2001)) using the history of the MCMC chains. This proposal now has information about spatial corre-
lations in the LAB.

2.  Randomly chose a type of parameter to sample (i.e., LAB depths or nodes) at each MCMC step.
3.  If chosen parameter = LAB:

 (a)  Randomly select m columns at a time, with all columns having the same probability of being chosen.
 (b)  Propose a new sample for the selected LAB depths using the global multivariate Gaussian proposal.
 (c)  Follow items (3–5) of the first stage.

4.  If chosen parameter = conductivity nodes, the algorithm follows items (a–f) of the second stage.

5.4. Fourth Stage: Adaptive Strategy for the Conductivity Nodes

When the number of MCMC steps reaches a predefined number of simulations (nodes-adapt):

1.  Compute a multivariate log-normal proposal distribution via the Adaptive Metropolis algorithm using the 
MCMC chains of all nodes.

2.  Randomly chose a type of parameter to sample (i.e., LAB depths or nodes) at each MCMC step.
3.  If chosen parameter = LAB, follow item (3) of the third stage.
4.  If chosen parameter = conductivity nodes:

 (a)  Randomly select n2 nodes with a metropolized-independent sampler.
 (b)  Use the multivariate log-normal distribution to propose new conductivity values for the n2 random nodes 

with probability q(⋅|⋅) defined in Eq. C2.
 (c)  Follow items (c–f) of the second stage.

The first stage only needs a moderate number of models to significantly reduce the original range of possible 
LAB values. This rapid convergence is due to the strong combined sensitivity of SW and MT to the background 
field; it also allows the MCMC inversion to focus on the last three stages (i.e., on conductivity anomalies not re-
lated to the background T-P-C conditions) while still allowing a continuous improvement of the background field. 
Additional gain in convergence efficiency is obtained with adaptive sampling strategies applied to both LAB and 
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conductivity nodes. The implementation of these strategies is almost imperative given the high-dimensionality 
of the problem.

Note that the burn-in period needs to be larger than the total number of steps in the first stage (LAB-stage) to 
ensure the overall ergodicity (e.g., Meyn & Tweedie, 2012) and correct convergence of the sampler (Adaptive 
Metropolis and the RB + MCMC procedure of stages 3 and 4 maintain ergodicity, Haario et al., 2001, 2006; 
Manassero et al., 2020, see also Section 3.1.2). We also note that while more advanced sampling strategies (e.g., 
parallel tempering, differential evolution, and auto-regressive chains) can be implemented to further improve 
efficiency, we deliberately use this practical (and basic) four-step adaptive strategy to test our joint inversion 
algorithm under adverse circumstances.

6. Numerical Examples
6.1. Example 1: Large-Scale Thermal Lithospheric Structure

The aim of this example is to demonstrate the improved resolution and efficiency of the joint MT + SW inver-
sion to recover the background conductivity structure compared to the probabilistic inversion of MT data only 
presented in Manassero et al. (2020). Accordingly, we only use the LAB parameterization in the first and third 
stages (Sections 5.1 and 5.3), simple noise statistics for the data and the same model discretization as in Manas-
sero et al. (2020).

6.1.1. Synthetic Data

The synthetic data correspond to a large-scale lithospheric model with dimensions 1600 × 1600 × 460 km (Fig-
ure 1). The MT synthetic data are the off-diagonal apparent resistivities and phases computed for 12 periods 
between 3.2 s and 104 s at 400 stations. The stations are located on a grid of 20 × 20 (Figure 1a) with an intersta-
tion distance of 80 km. The data uncertainties are assumed to be uncorrelated and normally distributed. We use a 
standard deviation of 8% for the apparent resistivities and 2.5° for the phases. For the case of the SW, the synthetic 
data are the fundamental mode Rayleigh wave phase velocities for periods between 15 and 175 s, computed at 
the locations of the MT stations. We assume normally distributed and uncorrelated data errors with a standard 
deviation (std) of 20% of the period (e.g., std = 5 m/s at 25 s and std = 35 m/s at 175 s). For both data sets, the 
misfit function is given by Equation 3. To minimize the so-called “inversion crime,” where the forward model 
used during the inversion is the same as that used to create the synthetic data (Kaipio & Somersalo, 2006), we 
compute the synthetic MT and SW data with a finer FE mesh than that used in the inversion.

6.1.2. Model Setup

The inversion area is subdivided into 18 × 18 columns (white squares in Figure 1b) of size 80 × 80 × 460 km. Each 
column is comprised of 4 × 4 × 20 FE cells (i.e., the computational domain is discretized with 40 × 40 × 20 finite 
elements). The model includes two padding cells at the borders of the domain and four air-layers (total thickness 
of 106 km) with resistivity ρ = 1015 Ωm. As shown in Manassero (2019) and in the Supporting Information S1, 
the absorbing boundary conditions allow for a small number of padding cells (and, therefore, considerable size 
reduction of the computational domain) without compromising the solution. The model parameters are the depths 
to the LAB of the 324 columns within the inversion area, that is, there is one model parameter per column. The 
true conductivity model is shown in Figure 1 and it is controlled by the subsurface thermal structure. The resis-
tivity in the crust (Moho at 49 km depth) is held constant and equal to 20,000 Ωm (see Manassero et al., 2020).

6.1.3. Prior and Proposal Distributions

The priors for the LAB depths are uniform distributions defined in a range of ±70 km, centered on the true value 
of each column. The proposals used in the first stage of the inversion are Gaussian distributions centered on the 
current sample with a standard deviation of 20 km. The proposal is adapted in the third stage (starting at 80,000 
steps), and therefore it becomes a multivariate Gaussian distribution that reflects the spatial correlations between 
LAB values of all columns (see Section 5.3). The initial model (i.e., starting point of the MCMC inversion) has 
a flat LAB located at 180 km depth.
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6.1.4. Inversion Results

We ran a total of 600,000 MCMC simulations using two processors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 
2.50 GHz processors) per frequency and variable RB tolerances of β = 0.07 for the first 50,000 MCMC steps 
and β = 0.05 for the rest of the simulation. After computing Geweke's convergence diagnostics (Geweke, 1992) 
for all parameters, the burn-in period was set to 100,000 steps. This burn-in and run length of the simulation is 
also consistent with the Raftery-Lewis diagnostics (Raftery & Lewis, 1992). Despite the small number of pro-
cessors used, the joint inversion took only 25 hr, with a staggering average of 0.15 s per simulation. This means 

𝐴𝐴 𝐴 99.5% gain in computational efficiency compared to the high-fidelity solution (∼30 s). For the same model, 
and using the same number and type of processors, the RB + MCMC inversion of MT data only (see Manasse-
ro et al., 2020) took ∼30 days (an average of 1.03 s per MCMC iteration) and convergence was achieved after 
2,000,000 MCMC simulations (based on visual inspection of the chain's evolution and basis size). This dramatic 
gain in efficiency of the joint inversion is due mainly to (a) the implementation of the CM algorithm, (b) the use 
of adaptive MCMC strategies, and (c) the high sensitivity of SW data to the background thermal structure.

The posterior PDFs of 60 of the 324 parameters are shown in Figure 2. The data PDFs for the dispersion curves at 
two illustrative stations and the data PDFs for MT at one station are shown in Figure 3 and Figure 4, respectively. 
Additional results can be found in the Supporting Information S1. The results clearly show that the posterior 
PDFs for all parameters are well-behaved (i.e., single valued and approximately Gaussian) and include the true 
solution, which is always close to the peaks of the PDFs. The resulting uncertainties affecting the LAB values are 
comparable to those obtained in real inversions (e.g., Afonso, Moorkamp, & Fullea, 2016; Zhang et al., 2019). 
The data fit is excellent for both data sets (see Figures 3 and 4).

The true, Maximum Likelihood Estimation (MLE) and mean models are shown in Figure 5, together with the 
95% credibility intervals of the posterior PDFs. The root-mean-square (rms) values of the MLE and mean con-
ductivity models, as well as the rms for the LAB structure, are included in Table 2. As a comparison, we have also 
included the rms values obtained for the same model after the RB + MCMC inversion of 3D MT data only (see 
Manassero et al., 2020), which are considerable higher than those obtained with the joint inversion.

The evolution of the misfits for MT and SW data is shown in Figure 6. The number of bases computed per fre-
quency and field orientations are shown in Figure 7. In all cases, a rapid increment in the basis size is observed 
during the first 100,000 simulations, which correlates with a rapid decrease in the overall misfits (Figure 6). This 
rapid increment in the number of basis is the combination of two factors: (a) the starting point of the inversion is 
far from the high probability region and (b) the initial proposal distribution is not optimal and of large variance. 
The MCMC algorithm thus samples a wide spectrum of models in its attempt to locate the best paths to the high 
probability regions. During this exhaustive exploration, the moves or “jumps” through the parameter space are 
large. Consequently, the resulting conductivity models are significantly different from each other and the surro-
gate needs to be constantly enriched in order to produce accurate solutions for all possible models.

After ∼100,000 MCMC steps, the basis size reaches a plateau (i.e., saturation of the surrogate) for all frequencies 
and orientations. This means that (a) the chain has reached the high probability regions and (b) the RB surrogate 
is “rich enough” to be able to deliver accurate solutions within these regions (as only a small number of new bases 
are subsequently required). At this point, we could stop the adaptation or enrichment of the surrogate without 
compromising the accuracy of the final solution.

RMS conductivity (log10 Ωm) RMS LAB depth (km)

MLE Mean model MLE Mean model

Joint RB + MCMC 0.08 0.02 6.89 2.21

RB + MCMC 0.19 0.15 21.20 17.01

Note. The rms values obtained after the Reduced Basis  +  Markov chain Monte Carlo (RB + MCMC) inversion of 3D 
magnetotelluric (MT) data only are also included (extracted from Manassero et al., 2020).

Table 2 
Root-Mean-Square (RMS) Values of the Mean and Maximum Likelihood Estimation (MLE) Conductivity and Lithosphere-
Asthenosphere Boundary (LAB) Models With Respect to the True model
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Figure 2. Marginal posterior probability density functions (PDFs) (blue bars) of 60 model parameters obtained after 600,000 Reduced Basis + Markov chain Monte 
Carlo (RB + MCMC) simulations. The real value, starting value, and prior bounds of each parameter are shown in green, red, and light blue vertical lines, respectively. 
The best Gaussian fits to the real PDFs given by the histograms are shown in black lines. The numbers within each panel correspond to the columns highlighted in 
Figure 1b.
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These results demonstrate that our RB + MCMC approach successfully solves the joint probabilistic inversion 
problem and retrieves the first order conductivity structure (and associated uncertainties) from noise-free MT 
and SW data. Moreover, we demonstrate that the addition of the SW data increases the overall efficiency of the 
algorithm and significantly reduces the range of acceptable conductivity models compared to those obtained from 
the inversion of MT data only.

Figure 3. Posterior probability density functions (PDFs) of Rayleigh dispersion curves for stations (a) 89 and (b) 355. Synthetic data and error bars are plotted in green. 
The location of the stations are shown in Figure 1a.
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Figure 4. Posterior probability density functions (PDFs) of magnetotelluric (MT) data for station 89. Synthetic data and error bars are plotted in green. (a and b) 
Posterior PDFs of the off-diagonal apparent resistivities. Both axes are in log scale (c and d) Posterior PDFs of the off-diagonal apparent phases. The location of the 
stations is shown in Figure 1a.
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6.2. Example 2: Large-Scale Lithospheric Structure With Conductivity Anomalies

6.2.1. Model Setup

In order to assess the applicability of our method to more realistic scenarios, we have created a synthetic model 
using the crustal conductivity structure (Moho ∼ 40 km) reported for southeast Australia using data from the 
dense AusLAMP Array of MT stations, with a spacing of ∼55 km (Kirkby et al., 2020). In this model, the ocean 
has been replaced by crustal structures with resistivity values of 100 Ωm at the southwest and southeast of the 

Figure 5. Conductivity structures corresponding to the (a) maximum likelihood estimation (best-fitting model); (b) mean model; conductivity models corresponding to 
the lower (c) and upper bound (d) of the 95% credibility interval of the posterior probability density function (PDF) obtained after 600,000 MCMC steps; and (e) true 
model. The iso-surfaces of −2.8 and −2 log10 S/m are plotted as a reference.

Figure 6. Data misfits for the dispersion curves (red line) and magnetotelluric (MT) (blue line) for each one of the 600,000 
Reduced Basis + Markov chain Monte Carlo (RB + MCMC) steps.
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model and 10 Ωm between those regions. These values were chosen to add another strong resistivity contrast to 
those already present in the crust. The area of interest is shown in Figures 8a and 9. We include the possibility 
of both correlated and uncorrelated velocity-conductivity structures in the crust. In Region 1 (white region in 
Figure 8d), we assign a constant ratio Vp/Vs = 1.78 and assume Vp to be correlated with electrical conductiv-
ity (Meju et  al., 2003) as log10(1/σ) = mlog10(Vp) + c, where m = 3.88 and c = 13 for consolidated rocks. 
For the crustal velocity structure of Region 2 (see Figure 8d), we assign constant velocities Vp = 6.8 km/s and 
Vs = 3.9 km/s and assume them independent of electrical conductivity.

The mantle includes the lithospheric model of Section 6.1 as a background (with an additional cut-off for resis-
tivity values higher than 20,000 Ωm) plus several multi-scale (and of variable geometry) conductivity anomalies 
that simulate realistic geological features. In particular, we have included two elongated anomalies resembling 
trans-lithospheric and trans-crustal magmatic systems (Figure 8b and 8c). Region 1 represents the continuity of 
these translithospheric structures into the crust. The goal here is to assess the identifiability of the true conductiv-
ity structure, including background and conductivity anomalies within both the crust and the mantle, from noisy 
3D MT and SW measurements.

There are 2290 conductivity nodes (black dots in Figure  8c) sparsely located within the inversion volume 
(900 × 900 × 410 km), which is discretized into 361 columns. The vector of model parameters therefore contains 
361 LAB values and 2290 nodal conductivity values. The inversion volume is discretized with 38 × 38 × 20 finite 
elements (of 25 × 25 km in the x-y direction, and variable vertical thickness). As before, the computational do-
main includes four extra layers of air with resistivity ρ = 1015 Ωm and total thickness of 106 km, and two padding 
cells at the lateral boundaries of the domain. The conductivity value of each numerical cell is obtained by adding 
the background conductivity derived from the LAB structure (Section 4.1) and the anomalous conductivity ob-
tained after interpolation of the nodal values (Section 4.2).

6.2.2. Synthetic Data

The MT synthetic data were computed at 298 stations located according to the real AusLAMP deployment (black 
dots in Figure 9) in New South Wales and Victoria, Australia. The data are the full impedance tensor computed 
for 18 periods between 15.80 s and 39,800 s, which correspond to the frequencies found in the AusLAMP data. 
All data were contaminated with random noise (see below). The error floors are set to 5% of max(|Zxx|, |Zxy|) 
for the components Zxx and Zxy of the impedance tensor, and 5% of max(|Zyy|, |Zyx|) for the components Zyy 
and Zyx. The data errors are assumed to be uncorrelated and exponentially distributed, that is, we assume that 

Figure 7. Basis size as a function of the Markov chain Monte Carlo (MCMC) simulations for different frequencies and field 
orientations (S⊥ mode in blue and S mode in red).
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the data misfit follows Equation 4. The MT data are generated with the true conductivity value for each FE cell, 
whereas the models used during the inversion are obtained via interpolation of the nodes' values (Section 4.2). 
This reduces the inversion crime and simulates a more realistic scenario where the (unknown) true structures are 
approximated via a chosen parameterization in the inversion. This also implies, however, that a perfect data fit 
may not be achievable.

For the case of SW, the synthetic data are the fundamental mode Rayleigh wave phase velocities for 34 periods 
between 15 and 180 s. The stations are located on a grid of 19 × 19 (red dots in Figure 9) with an interstation 
distance of 50 km (comparable to those in the WOMBAT Array; Rawlinson et al., 2008). We have added random 
noise to all the data (see example in Figure 13) assuming normally distributed data errors (i.e., the misfit function 
is given by Equation 3) with a representative standard deviation of 1% of the velocity in meters per second, com-
parable to the data errors expected for real SW data in dense arrays (Moorkamp et al., 2010; Wang et al., 2020; 
Yang & Forsyth, 2006).

6.2.3. Prior and Proposal Distributions

The prior and proposal distributions for the LAB parameters are the ones defined in Section 6.1.3. For the con-
ductivity nodes, we use Gaussian prior distributions centered on the background conductivity value (in log-scale) 
with a standard deviation of 1.5 log10(S/m). This prior information behaves as a regularization term, that is, it 
penalizes the introduction of anomalies that are not required by the data. The initial proposal distributions are 

Figure 8. 3D views of the true conductivity structure. Panel (a) shows the coordinates of the inversion volume. Conductivity anomalies and background structure 
are highlighted in both (b) and (c) panels using the iso-surfaces of −1.5 and −2.0 log10 (S/m). Black dots in (c) indicate the position of the conductivity node-
parameters within the inversion volume. A horizontal slice at 1 km depth is shown in panel (d). The region where seismic velocity is assumed correlated with electrical 
conductivity is highlighted in white (Region 1).
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log-normal (Equation C1) centered on the current node value 𝐴𝐴 𝐴𝐴𝑖𝑖
𝑡𝑡−1 with standard deviations of 0.8 log10(S/m). 

During the fourth stage, we use an adapted multivariate log-normal distribution centered on the current sample 
(see Section 5.4). The starting conductivity model is obtained by setting all the LAB depths to 180 km and a value 
of log10(true val) − 2.0 (i.e., two order of magnitude more resistive than the real value) for all the conductivity 
nodes.

The first stage was set to 10,000 steps, where we sample LAB depths one column at a time. During the second 
stage, the algorithm randomly decides to sample either the LAB depth of one column or the conductivity values 
of n1 = 2 nodes. The multivariate proposal for the LAB (third stage) is computed when the chains reach 250,000 
samples and it is adapted every 100,000 LAB-samples during the rest of the inversion. During this third stage, we 
propose conductivity values of n1 = 2 random nodes or LAB depths of m = 2 random columns (from the adapted 
multivariate proposal distributions; see Section 5.3). The multivariate log-normal proposal distribution for the 
nodes is computed when their chains reach 500,000 samples (fourth stage) and it is subsequently adapted every 
100,000 steps. During this stage, we randomly select n2 = 10 nodes or m = 2 columns at a time (see Section 5.4).

6.2.4. Inversion Results

We ran a total of 1,250,000 MCMC simulations for 18 frequencies using two processors (Intel(R) Xeon(R) 
CPU E5-2680 v3 @ 2.50 GHz) per frequency. The tolerances used were β = 0.08 for the first 150,000 steps and 
β = 0.068 for the remaining of the simulation.

Figure 9. Location of the AusLAMP MT stations (black dots) in southeast Australia. Red dots denote the locations of the 
computed SW dispersion data used in Example 2.
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The burn-in period was set to 200,000 steps. This is larger than the length of the first stage (condition to main-
tain ergodicity of the chain) and the burn-in suggested by Geweke's convergence diagnostics (Geweke, 1992) 
for all parameters. Again, even with modest computational resources, the inversion took 27.4 days with an 
average of 1.9 s for each simulation. This represents a time reduction of 𝐴𝐴 ∼ 95% for each forward computation. 
We note that the average time spent in each simulation is higher than those in Example 1. This is mainly 
due to the large number of bases (∼190) required in order to explain the complexity of this 3D model (see 
Figure 16).

The Maximum Likelihood Estimation (MLE) and mean models are shown in Figure 10 together with the 95% 
credibility intervals of the posterior PDF. The crustal and background conductivity structure and the location 
and volume of the conductivity anomalies are well resolved. Depth slices from the 95% credibility intervals, 
MLE, true and mean models are shown in Figure 11. In this figure we also include depth slices from five random 
subsets from the posterior, each obtained as the mean of 10 randomly chosen models form the entire ensemble 
of conductivity models making up the posterior PDF. By design, features that are well resolved by the inversion 
are persistent in all subsets, whereas poorly resolved features show higher variability among subsets (Taranto-
la, 2005). The identifiability of the background structure is also illustrated in Figure 12 where we show that the 
true LAB depths are close to the mean value of the marginal posterior PDFs. The sizes of the basis per frequency 
and the SW-MT data misfits for each of the 1,250,000 steps are shown in Figures 16 and 17, respectively, and 
show a similar pattern to those in Figure 6. It is worth noting that contrary to what we would expect from an 
inversion of MT data alone (see results in, e.g., Manassero et al., 2020; Rosas-Carbajal et al., 2013), model vari-
ability decreases with depth. The reason for this is the tighter constrains that the SW data puts on the background 
thermochemical structure.

For comparison, Figure 11 includes the results obtained from a deterministic inversion using the software Mo-
dEM3DMT (Egbert & Kelbert, 2012; Kelbert et al., 2014) with the same initial model (used also as prior model), 
numerical discretization, and MT data as in the joint probabilistic inversion. Multiple inversions were run using 
different damping factors (λ) and model covariance. Column (11) in Figure 11 shows depth-slices of the best 

Figure 10. 3D views of the conductivity structure corresponding to the (a) maximum likelihood estimation model; (b) mean model; (c) lower, and (d) upper bound of 
the 95% credibility interval of the posterior PDF obtained after 1,250,000 Reduced Basis + Markov chain Monte Carlo (RB + MCMC) steps. The iso-surfaces of −1.5 
and −2.0 log10 S/m are plotted in all panels to highlight the background structure and the conductivity anomalies in the mantle.
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Figure 11. Columns (1–5): depth slices from the (1) true model; (2) MLE model, (3) mean and conductivity models corresponding to (4) the 5% percentile, and (5) the 
95% percentile of the posterior PDF. Columns (6–10): depth slices for five mean models computed with 10 random samples of the posterior PDF. Columns (11): best 
model from a ModEM deterministic inversion. Selected depths are shown on the left of the figure.
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model obtained after 82 iterations using λ = 1 and covariance of 0.2. The inversion took 3.62 hs using 40 proces-
sors and the final data rms was 2.9. The main reason for this relatively large rms is the coarse mesh used in the 
inversion (same size as in the RB + MCMC inversion for a valid comparison); the effect of cell size on the rms 
is explored in Robertson et al. (2020) and Meqbel et al. (2014). We also observe that the recovered conductivity 
structure in the mantle is not satisfactory and overall more conductive than the true conductivity value. As shown 
in Robertson et al. (2020), this effect can also be minimized by decreasing the cell size.

Examples of the posterior PDFs of SW and MT data are shown in Figures 13, 14 and 15; additional posterior 
PDFs can be found in the Supporting Information S1. All of the dispersion data points are contained within one 
standard deviation of the posterior PDFs (e.g., Figure 13). This is also the case for the great majority of the MT 
data, although a poor data fit (or bias) is observed in some stations. As mentioned in Section 6.1.1, the noisy 
synthetic MT data is computed with the true conductivity model (Figure 8), whereas the conductivity models 
used in the actual inversion are derived from the interpolation of nodal values. This discrepancy or inadequacy 
between models and the considerable random noise that was added to the data are the main reasons of the poorer 
data fit seen at some stations (e.g., Smith, 2013).

The results from this example demonstrate that the joint probabilistic inversion of surface wave dispersion and 
MT data (a) is a practical option with modest computational resources, (b) succeeded in identifying the true LAB 
and conductivity structures in the crust and mantle (background plus anomalies), and (c) produced well behaved 
posterior distributions and global measures of uncertainty and correlations between model parameters.

Figure 12. Marginal posterior probability density functions (PDFs) (blue bars) of 20 LAB depths obtained after 1,250,000 Reduced Basis + Markov chain Monte 
Carlo (RB + MCMC) steps. The real value, starting value, and prior bounds of each parameter are indicated by the green, red, and blue lines, respectively. The best 
Gaussian fits to the real PDFs given by the histograms are shown in black lines. The numbers within each panel correspond to the columns highlighted in Figure 9 
(white squares).
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6.3. A Note on Crustal Velocity Structure and Bulk Mantle Composition

In all the numerical examples discussed so far, we considered a constant major-element composition for the 
mantle. This simplification seems appropriate in applications with emphasis on the general structure of the lith-
osphere, as the sensitivity of SW and MT to bulk major-element composition is of second-order compared to 
factors such as temperature and fluid content. If the mantle's major-element composition is of interest, other data 
sets such as gravity and/or geoid anomalies would be required (Afonso, Fullea, Griffin, et al., 2013; Afonso, 
Fullea, Yang, et al., 2013; Afonso, Rawlinson, et al., 2016).

In agreement with the main goal of this work -the deep lithospheric structure-, we have also assumed a fixed 
seismic structure for the crust (see e.g., Section 6.2.1). This would correspond to the case in which reliable prior 
information is available from previous studies such as ambient noise tomography and/or receiver function studies 
(e.g., Bello et al., 2021; Kennett & Salmon, 2012; Kennett et al., 2011; Young et al., 2013, in southeast Austral-
ia). A similar idea was applied to a real joint inversion by Jones et al. (2017) in Southern Africa. However, if the 
seismic structure of the crust needs to be inverted for, we can readily expand the vector of model parameters to 
include, e.g., the bulk density, Vs and Vp of the n layers used to discretize the crust in each 1D column. A more 
efficient alternative is to use the existing crustal conductivity nodes (e.g., Figure 8c) to invert for crustal seismic 
parameters as well. The bulk density, Vs and Vp values of each numerical cell within the crust are then obtained 
by interpolation using the same scheme as for σ. This option is particularly useful when the interstation spacings 
of both MT and seismic arrays are comparable. We are currently assessing these schemes and results will be 
presented in a forthcoming publication.

6.4. A Note on Model Discretization

The numerical examples discussed above have been discretized using finite elements with a horizontal dimension 
of 25 × 25 km. While this is likely to be too coarse for real regional applications, Section 3 of the Supporting In-
formation S1 includes tests that show that the current discretization is sufficient to represent the computed fields 
and the deep lithospheric structures of interest, while keeping the computational cost low. However, we empha-
size that in order to ensure numerical accuracy of the forward computation, special care is needed when selecting 
the model discretization in real studies with more focus on shallow, small-scale structures.

Figure 13. Posterior probability density functions (PDFs) of Rayleigh wave dispersion curves for stations (a) ST304 and (b) ST290. Synthetic data and error bars are 
plotted in green and the computed data for the initial model is plotted in blue. The location of the stations are shown in Figure 9.
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7. Conclusions
We presented a novel, MCMC-driven probabilistic joint inversion of 3D magnetotelluric (MT) and sur-
face-wave (SW) dispersion data for imaging the electrical conductivity and temperature structures of the 
whole lithosphere and sublithospheric upper mantle. The method is based on (a) an efficient parallel-in-par-
allel structure to solve the 3D MT forward problem, (b) the combination of a reduced order, MCMC-driven 
strategy to compute fast and accurate surrogate solutions to the 3D MT forward problem, (c) adaptive strat-
egies for both the MCMC algorithm and the surrogate, and (d) an efficient dual parameterization to couple 
both data sets.

Figure 14. Posterior probability density functions (PDFs) of the off-diagonal components of the MT impedance tensor for station I9. Synthetic data and error bars 
are plotted in green and the computed data for the initial model is plotted in blue. Panels (a), (b), (e), and (f): Posterior PDFs of the real and imaginary parts of the 
off-diagonal components. A zoom of the PDFs and input data is shown in panels (c), (d), (g), and (h). In all panels, the data has been scaled by the square-root of the 
period. The location of the station is shown in Figure 9.
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The feasibility, potential, and efficiency of our algorithm to solve the joint inverse problem are demonstrated with 
two realistic whole-lithosphere examples of increasing complexity. In both cases, we obtain staggering gains in 
computational efficiency (>96%) compared to a traditional MCMC implementation. Average times per MCMC 
step are of the order of 1 s, even when using modest computational resources. We also show that the inclusion 
of SW data and a simple Cascade-Metropolis algorithm resulted in drastic improvements in computational effi-
ciency and quality of the recovered models compared to the RB + MCMC inversion of MT data only (Manassero 
et al., 2020).

The model parameterization takes advantage of the differential sensitivities of MT and SW dispersion data 
to different aspects of the problem by using two sets of parameters. The first set corresponds to LAB depths, 
which control the large-scale (background) conductivity/velocity structure. The second set corresponds to 

Figure 15. Posterior probability density functions (PDFs) of the diagonal components of the MT impedance tensor for station I9. Synthetic data and error bars are 
plotted in green and the computed data for the initial model is plotted in blue. Panels (a), (b), (e), and (f): Posterior PDFs of the real and imaginary parts of the diagonal 
components of the impedance tensor. A zoom of the PDFs and input data is shown in panels (c), (d), (g), and (h). In all panels, the data have been scaled by the square-
root of the period. The location of the station is shown in Figure 9.
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conductivity nodes inside the model, which control the small-scale conductivity anomalies. An additional 
advantage of using this parameterization is that a rapid convergence is achieved by using the LAB depths to 
constrain the first-order conductivity/velocity background at the beginning of the inversion. Once this first-or-
der convergence has been achieved, the nodes are used to locally modify the background to fit the smaller-scale 
features of the data.

Finally, we note that proposed method is general enough to incorporate more advanced MCMC algorithms (e.g., 
trans-dimensional schemes, parallel tempering, and differential evolution), additional model parameters (e.g., 
bulk mantle composition) and other forward operators (e.g., gravity anomalies). An application to real MT and 
seismic data will be presented in a forthcoming publication (Part III).

Figure 16. Basis size as a function of Reduced Basis + Markov chain Monte Carlo (RB + MCMC) steps for the 18 frequencies and field orientations used to compute 
the MT forward solution (S⊥ mode in blue, and S mode in red).
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Appendix A: Mapping Thermochemical Parameters to Electrical Conductivity
The temperature dependence of electrical conductivity can be described with an Arrhenius-type Equation:

� = �0exp
(

−Δ�
���

)

, (A1)

where σ0 is the so-called pre-exponential factor, T [K] is absolute temperature, and kB [eV/K] the Boltzmann's 
constant. ΔH [eV] is the pressure-dependent activation enthalpy, defined as

Δ𝐻𝐻 = Δ𝐸𝐸 + 𝑃𝑃Δ𝑉𝑉 𝑉 (A2)

where P is the pressure (GPa), ΔE, and ΔV are the activation energy and activation volume, respectively.

The main bulk conduction mechanisms in mantle minerals are ionic conduction, small polaron (hopping) con-
duction and proton conduction (e.g., Yoshino, 2010). Each mechanism follows an Arrhenius-type equation with 
particular activation energies depending on their charge mobility. These three conduction mechanisms can be 
integrated in a model for the electrical conductivity of mantle rocks as a function of pressure, temperature, 
water content, and composition (via Fe content) for each mineral phase (see also Fullea et al., 2011; Yoshino 
et al., 2009):

� = �0exp
(

−Δ�(���, � )
���

)

+ �0�exp
(

−Δ��

���

)

+ �� (A3a)

�� = � (��)exp
(

−Δ����(��)
���

)

, (A3b)

−Δ𝐻𝐻(𝑋𝑋𝐹𝐹𝐹𝐹, 𝑃𝑃 ) = 𝑎𝑎 + 𝑏𝑏𝑋𝑋𝐹𝐹𝐹𝐹 + 𝑐𝑐𝑋𝑋2
𝐹𝐹𝐹𝐹 + 𝑑𝑑𝑋𝑋3

𝐹𝐹𝐹𝐹 + 𝐹𝐹𝑋𝑋4
𝐹𝐹𝐹𝐹 + 𝑓𝑓𝑋𝑋5

𝐹𝐹𝐹𝐹 + 𝑃𝑃Δ𝑉𝑉 , (A3c)

where σ0, σ0i (S/m), and f(Cw) are the small polaron, ionic, and proton pre-exponential factors, respectively, ΔV 
(cm3/mol) is activation volume, ΔH, ΔHi (eV), and ΔHwet are activation enthalpies and XFe is the bulk Fe content 
in wt%.

The first term in the right-hand side of Equation A3a describes the contribution from small polaron conduction. 
As mentioned above, the activation enthalpy for this process depends on the iron content and pressure. This 
dependence is represented by a polynomial on XFe (Equation A3c) plus a term that depends on pressure (the 
coefficients a, b, c, d, e, f are determined experimentally). The second term of Equation A3a represents ionic 
conduction at high temperature and the third term (σp) represents the proton conduction due to the presence of 
“water” (hydrogen diffusion). f(Cw) and ΔHwet are functions of the water content Cw (wt%) and they are obtained 
from laboratory experiments. The reader is referred to Fullea et al. (2011); Pommier (2014); Jones (2014); and 
Jones (2016) for a summary on the results from different laboratories Table A1.

Phase σ0 σ0i a b c d e F ΔV ΔHi XFe

Olivine 2.70 4.73 1.64 0.246 −4.85 3.26 0.68 2.31 0.10

Opx 3.0 1.90 −2.77 2.61 −1.09 0.107

Cpx 3.25 2.07 −2.77 2.61 −1.09 5.84 × 10−2

Garnet 4.96 2.60 −15.33 80.40 −194.6 202.6 −75.0 0.168

Table A1 
Parameters Used to Compute Mantle Conductivity
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Appendix B: Kriging Interpolation
Kriging, or Gaussian process regression, is one of the most common methods for spatial interpolation (see e.g., 
Cressie,  1993; Gibbs,  1998; Gibbs & MacKay,  1997; Omre,  1987; Rasmussen,  1997; Williams & Rasmus-
sen, 1996). The main idea is to predict (or interpolate) the value of a function Z at m locations from n observations 
by computing average spatial weights (W). In simple kriging, these weights are derived using a known covariance 
function c between observations (given by the matrix Kobs) and between the observations and the m estimation 
locations (given by the covariance matrix Kloc):

𝑊𝑊 = 𝐾𝐾−1
𝑜𝑜𝑜𝑜𝑜𝑜 ⋅𝐾𝐾𝑙𝑙𝑜𝑜𝑙𝑙 , (B1)
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The interpolation (or estimated value) at the m locations is then given by Zloc = W ⋅ Zobs, where Zobs is the vector 
containing the n observations.

The covariance function c can take any form with the only constrain that it must generate a nonnegative definite 
covariance matrix. A common form is given by (e.g., Gibbs & MacKay, 1997):

�(��, ��) = �1exp

(

−1
2
∑

�

(��
� − ��

�)
2

�2�

)

+ �2, (B2)

where 𝐴𝐴 𝐴𝐴𝑙𝑙
𝑛𝑛 is the l component of xn. θ1 and θ2 are hyperparameters, where θ1 represents the overall vertical scale 

relative to the mean field and θ2 gives the vertical uncertainty. rl is the correlation or scale length and it character-
izes the distance in the direction l over which the value of Z varies significantly. It should be noted that since the 
spatial weights (W) depends on the covariance function c, the interpolated values at the m locations also depends 
on the chosen form for c.

B1. Spatially Varying Length Scales

The covariance function of Equation B2 assumes that the correlation length (rl) is fixed in each direction (l) and 
location (x). In the most general case, however, assuming a fixed rl might lead to a simplistic and poor representa-
tion of the conductivity model. We, therefore, use a positive definite covariance function with spatially variable 
correlation lengths (Gibbs, 1998; Gibbs & MacKay, 1997):

�(��, ��) = �1
∏

�
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2��(��)��(��)
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)1∕2

exp
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2

�2� (��) + �2� (��)

)

 (B3)

where rl(x) is an arbitrary parameterized function of position x defined in [−1,1]2  ×  [0, 1]. The form of 
rl(x) as a function of the scaled coordinates (x, y, z) used in Examples 1 and 2 in the main text is shown in 
Procedure 1. This covariance function has the property that the variance is independent of x and equal to θ1. 
Since a change in θ1 will produce changes in the vertical scale in the whole domain (see previous section), the 
inclusion of θ1 as an additional parameter of the inversion can (potentially) benefit the efficiency and conver-
gence of the algorithm. The implementation of θ1 as a hyper-parameter of the inversion is left for future work.

Appendix C: Log-Normal Proposal Distributions
The log-normal distribution (Gaussian in log-scale) used in the second stage is defined as:

�(��
�) =

1
√

2���
��
exp

(

−
ln(��

�) − �2

2�2

)

, (C1)
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where 𝐴𝐴 𝐴𝐴(𝑚𝑚𝑖𝑖
𝑡𝑡) is the proposed value for node i, and μ and s are the mean and standard deviation in log-scale.

In Section 5, we have chosen to define a multivariate Gaussian proposal of dimension Nnodes × Nnodes, where Nnodes 
is the number of conductivity nodes in the model. Since the nodes' conductivity values can span several orders of 
magnitude, the Gaussian proposal is defined in log-scale but we evaluate its probability q(⋅|⋅) in linear scale, that 
is, a multivariate log-normal PDF centered at the current state mt−1 with covariance Σ:

�(𝐦𝐦�|𝐦𝐦�−1) = 1

(2�)
������

2 (detΣ)
1
2
∏������

�=1 ��
�

exp
[

−1
2
(ln(𝐦𝐦�) − ln(𝐦𝐦�−1))�Σ−1(ln(𝐦𝐦�) − ln(𝐦𝐦�−1))

]

,

 (C2)

where mt is the proposed value for all nodes and mt−1 is the current sample.

Algorithm 1. Definition of rl(x) as a function of the scaled coordinates (x, y, z)

p rocedure rl(x)
 i f z > = 0.9 then
 r 3 = 0.5
 r 2 = r1 = 0.48
 e lse if z < 0.9 and z > = 0.8 then
 r 3 = 0.45
 r 2 = r1 = 0.43
 e lse if z < 0.8 and z > = 0.7 then
 r 3 = 0.4
 r 2 = r1 = 0.4
 e lse if z < 0.7 and z > = 0.6 then
 r 3 = 0.4
 r 2 = r1 = 0.38
 e lse if z < 0.6 and z > = 0.5 then
 r 3 = 0.35
 r 2 = r1 = 0.33
 e lse if z < 0.5 and z > = 0.4 then
 r 3 = 0.33
 r 2 = r1 = 0.3
 e lse if z < 0.4 and z > = 0.3 then
 r 3 = 0.3
 r 2 = r1 = 0.28
 e lse if z < 0.3 and z > = 0.2 then
 r 3 = 0.28
 r 2 = r1 = 0.24
 e lse if z < 0.2 and z > = 0.1 then
 r 3 = 0.25
 r 2 = r1 = 0.23
 e lse if z < 0.1 then
 r 3 = 0.2
 r 2 = r1 = 0.15
 e nd if
e nd procedure
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Data Availability Statement
The authors acknowledge that data were not used, nor created for this research. The 3D rendering views were 
created using ParaView (Ahrens et al., 2005).
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